219 resultados para SOUTH AMERICA
Resumo:
The influenza A(H3N2) virus has circulated worldwide for almost five decades and is the dominant subtype in most seasonal influenza epidemics, as occurred in the 2014 season in South America. In this study we evaluate five whole genome sequences of influenza A(H3N2) viruses detected in patients with mild illness collected from January-March 2014. To sequence the genomes, a new generation sequencing (NGS) protocol was performed using the Ion Torrent PGM platform. In addition to analysing the common genes, haemagglutinin, neuraminidase and matrix, our work also comprised internal genes. This was the first report of a whole genome analysis with Brazilian influenza A(H3N2) samples. Considerable amino acid variability was encountered in all gene segments, demonstrating the importance of studying the internal genes. NGS of whole genomes in this study will facilitate deeper virus characterisation, contributing to the improvement of influenza strain surveillance in Brazil.
Resumo:
The dissemination of plasmid-mediated antimicrobial resistance genes may pose a substantial public health risk. In the present work, the occurrences ofblaCTX-M and plasmid-mediated ampCand qnrgenes were investigated in Escherichia colifrom 16 chicken carcasses produced by four commercial brands in Brazil. Of the brands tested, three were exporters, including one of organic chicken. Our study assessed 136 E. coli isolates that were grouped into 77 distinct biotypes defined by their origin, resistance profiling, the presence of β-lactamase and plasmid-mediated quinolone resistance genes and enterobacterial repetitive intergenic consensus-polimerase chain reaction typing. TheblaCTX-M-15, blaCTX-M-2 andblaCTX-M-8 genes were detected in one, 17 and eight different biotypes, respectively (45 isolates). Twenty-one biotypes (46 isolates) harboured blaCMY-2.Additionally, blaCMY-2 was identified in isolates that also carried either blaCTX-M-2 orblaCTX-M-8. The qnrB and/orqnrS genes occurred in isolates carrying each of the four types of β-lactamase determinants detected and also in oxyimino-cephalosporin-susceptible strains. Plasmid-mediated extended-spectrum β-lactamase (ESBL) and AmpC determinants were identified in carcasses from the four brands tested. Notably, this is the first description ofblaCTX-M-15 genes in meat or food-producing animals from South America. The blaCTX-M-8, blaCTX-M-15 andblaCMY-2 genes were transferable in conjugation experiments. The findings of the present study indicate that plasmid-mediated ESBL and AmpC-encoding genes are widely distributed in Brazilian chicken meat.
Resumo:
Chikungunya virus (CHIKV) transmission has been detected in America in 2013 and recently reached south up to Bolivia, Brazil and Paraguay, bordering countries of Argentina. The presence of the mosquito Aedes aegyptiin half of the country together with the regional context drove us to make a rapid assessment of transmission risk. Temperature thresholds for vector breeding and for virus transmission, together with adult activity from the literature, were mapped on a monthly basis to estimate risk. Transmission of chikungunya byAe. aegyptiin the world was seen at monthly mean temperatures from 21-34ºC, with the majority occurring between 26-28ºC. In Argentina temperatures above 21ºC are observed since September in the northeast, expanding south until January and retreating back to the northeast in April. The maximum area under risk encompasses more than half the country and around 32 million inhabitants. Vector adult activity was registered where monthly means temperatures exceeded 13ºC, in the northeast all over the year and in the northern half from September-May. The models herein proposed show that conditions for transmission are already present. Considering the regional context and the historic inability to control dengue in the region, chikungunya fever illness seems unavoidable.
Resumo:
A pseudogene, designated as "ps(5.8S+ITS-2)", paralogous to the 5.8S gene and internal transcribed spacer (ITS)-2 of the nuclear ribosomal DNA (rDNA), has been recently found in many triatomine species distributed throughout North America, Central America and northern South America. Among characteristics used as criteria for pseudogene verification, secondary structures and free energy are highlighted, showing a lower fit between minimum free energy, partition function and centroid structures, although in given cases the fit only appeared to be slightly lower. The unique characteristics of "ps(5.8S+ITS-2)" as a processed or retrotransposed pseudogenic unit of the ghost type are reviewed, with emphasis on its potential functionality compared to the functionality of genes and spacers of the normal rDNA operon. Besides the technical problem of the risk for erroneous sequence results, the usefulness of "ps(5.8S+ITS-2)" for specimen classification, phylogenetic analyses and systematic/taxonomic studies should be highlighted, based on consistence and retention index values, which in pseudogenic sequence trees were higher than in functional sequence trees. Additionally, intraindividual, interpopulational and interspecific differences in pseudogene amount and the fact that it is a pseudogene in the nuclear rDNA suggests a potential relationships with fitness, behaviour and adaptability of triatomine vectors and consequently its potential utility in Chagas disease epidemiology and control.
Resumo:
In South America, yellow fever (YF) is an established infectious disease that has been identified outside of its traditional endemic areas, affecting human and nonhuman primate (NHP) populations. In the epidemics that occurred in Argentina between 2007-2009, several outbreaks affecting humans and howler monkeys (Alouatta spp) were reported, highlighting the importance of this disease in the context of conservation medicine and public health policies. Considering the lack of information about YF dynamics in New World NHP, our main goal was to apply modelling tools to better understand YF transmission dynamics among endangered brown howler monkey (Alouatta guariba clamitans) populations in northeastern Argentina. Two complementary modelling tools were used to evaluate brown howler population dynamics in the presence of the disease: Vortex, a stochastic demographic simulation model, and Outbreak, a stochastic disease epidemiology simulation. The baseline model of YF disease epidemiology predicted a very high probability of population decline over the next 100 years. We believe the modelling approach discussed here is a reasonable description of the disease and its effects on the howler monkey population and can be useful to support evidence-based decision-making to guide actions at a regional level.
Resumo:
Systematics, phylogeny and geographical distribution of the South American species of Centris (Paracentris) Cameron, 1903, and Centris (Penthemisia) Moure, 1950, including a phylogenetic analysis of the "Centris group" sensu Ayala, 1998 (Hymenoptera, Apoidea, Centridini). A cladistic analysis with the objective of testing the hypothesis of monophily of Centris (Paracentris) Cameron, 1903, and of studying its phylogenetic relationships with the other subgenera that belong to the Centris group, sensu Ayala, 1998, and the relationships among the species that occur in South America, is presented. Centris (Paracentris) is a group of New World bees of amphitropical distribution, especially diversified in the Andes and in the xeric areas of South and North America. Thirty-one species were included in the analysis, four considered as outgroup, and 49 characters, all from external morphology and genitalia of adult specimens. Parsimony analyses with equal weights for the characters and successive weighting were performed with the programs NONA and PAUP, and analyses of implied weighting with the program PeeWee. The strict consensus among the trees obtained in all the analyses indicates that C. (Paracentris), as previously recognized, is a paraphyletic group. In order to eliminate that condition, the subgenera C. (Acritocentris), C. (Exallocentris) and C. (Xerocentris), all described by SNELLING (1974) are synonymized under C. (Paracentris). The subgenus C. (Penthemisia) Moure, 1950, previously considered a synonym of C. (Paracentris), is reinstated, but in a more restricted sense than originally proposed and with the following species: Centris brethesi Schrottky, 1902; C. buchholzi Herbst, 1918; C. chilensis (Spinola, 1851), C. mixta mixta Friese, 1904, and C. mixta tamarugalis Toro & Chiappa, 1989. Centris mixta, previously recognized as the only South American species of the subgenus C. (Xerocentris), a group supposedly amphitropical, came out as the sister-species of C. buchholzi. The following South American species were recognized under Centris (Paracentris): Centris burgdorfi Friese, 1901; C. caelebs Friese, 1900; C. cordillerana Roig-Alsina, 2000; C. euphenax Cockerell, 1913; C. flavohirta Friese, 1900; C. garleppi (Schrottky, 1913); C. klugii Friese, 1900; C. lyngbyei Jensen-Haarup, 1908; C. mourei Roig-Alsina, 2000; C. neffi Moure, 2000; C. nigerrima (Spinola, 1851); C. toroi sp. nov.; C. tricolor Friese, 1900; C. unifasciata (Schrottky, 1913), and C. vogeli Roig-Alsina, 2000. The relationships among the subgenera of the "Centris group" were: (Xanthemisia (Penthemisia (Centris s. str. - Paracentris))). Centris xanthomelaena Moure & Castro 2001, an endemic species of the Caatinga and previously considered a C. (Paracentris), came out as the sister group of C. (Centris) s. str. A new species of C. (Paracentris) from Chile is described: Centris toroi sp. nov. Lectotypus designations and redescriptions are presented for Centris burgdorfi, C. caelebs, C. lyngbyei, C. tricolor, C. autrani Vachal, 1904 and C. smithii Friese, 1900. New synonyms proposed: C. buchholzi Herbst, 1918 = Centris wilmattae Cockerell, 1926 syn. nov.; C. caelebs Friese, 1900 = Paracentris fulvohirta Cameron, 1903. The female of C. vogeli Roig-Alsina, 2000 and the male of C. xanthomelaena are described.
Resumo:
The genus Anthidium Fabricius in the South America: key for the species, descriptive notes, and geographical distribution (Hymenoptera, Megachilidae, Anthidiini). The Anthidiini, in South America, is represented by a single genus Anthidium Fabricius, 1804 (type-species: Apis manicata Linnaeus, 1758). Thirty nine species are treated in this paper, as follows: Anthidium alsinai Urban, 2001; A. andinum Joergensen, 1912; A. anurospilum Moure, 1957 nom. reval. (formerly = A. espinosai Ruiz, 1938); A. atricaudum Cockerell, 1926; A. aymara Toro & Rodríguez, 1998; A. chilense Spinola, 1851; A. chubuti Cockerell, 1910; A. colliguayanum Toro & Rojas, 1970; A. cuzcoense Schrottky, 1910; A. danieli Urban, 2001; A. decaspilum Moure, 1957; A. deceptum Smith, 1879; A. edwini Ruiz, 1935; A. espinosai Ruiz, 1938; A. falsificum Moure, 1957; A. friesei Cockerell, 1911; A. funereum Schletterer, 1890; A. garleppi Schrottky, 1910 = A. matucanense Cockerell, 1914 syn. nov.; A. gayi Spinola, 1851; A. igori Urban, 2001; A. larocai Urban, 1997; A. latum Schrottky, 1902; A. luizae Urban, 2001; A. manicatum (Linnaeus, 1758); A. masunariae Urban, 2001; A. nigerrimum Schrottky, 1910; A. paitense Cockerell, 1926; A. penai Moure, 1957; A. peruvianum Schrottky, 1910; A. rafaeli Urban, 2001; A. rozeni Urban, 2001; A. rubripes Friese, 1908 = A. boliviense Friese, 1920 syn. nov. = A. adriani Ruiz, 1935 syn. nov. = A. kuscheli Moure, 1957 syn. nov.; A. sanguinicaudum Schwarz, 1933; A. sertanicola Moure & Urban, 1964; A. tarsoi Urban, 2001; A. toro Urban. 2001; A. vigintiduopunctatum Friese, 1904; A. vigintipunctatum Friese, 1908, and A. weyrauchi Schwarz, 1943. Some taxonomic comments are made for each species, and new data on geographic distribution are also given. The females of A. andinum, A. igori, A. rozeni and the male of A. anurospilum are described for the first time. Identification keys (for males and females), as well as illustrations for almost all species, are provided.
Resumo:
This work, dedicated to the study of nesting habits of the species of the Neotropical genus Partamona Schwarz, is a sequence to the taxonomic revision recently published elsewhere. A total of 214 nests and nest aggregations of 18 species [Partamona epiphytophila Pedro & Camargo, 2003; P. testacea (Klug, 1807); P. mourei Camargo, 1980; P. vicina Camargo, 1980; P. auripennis Pedro & Camargo, 2003; P. combinata Pedro & Camargo, 2003; P. chapadicola Pedro & Camargo, 2003; P. nhambiquara Pedro & Camargo, 2003; P. ferreirai Pedro & Camargo, 2003; P. pearsoni (Schwarz, 1938); P. gregaria Pedro & Camargo, 2003; P. batesi Pedro & Camargo, 2003; P. ailyae Camargo, 1980; P. cupira (Smith, 1863); P. mulata Moure in Camargo, 1980; P. seridoensis Pedro & Camargo, 2003; P. criptica Pedro & Camargo, 2003; P. helleri (Friese, 1900)] were studied , including data about habitat, substrate, structural characteristics, construction materials and behavior. The descriptions of the nests are illustrated with 48 drawings. Partial data of the nests of P. bilineata (Say, 1837), P. xanthogastra Pedro & Camargo, 1997, P. orizabaensis (Strand, 1919), P. peckolti (Friese, 1901), P. aequatoriana Camargo, 1980, P. musarum (Cockerell, 1917) and P. rustica Pedro & Camargo, 2003 are also presented. Nests of P. grandipennis (Schwarz, 1951), P. yungarum Pedro & Camargo, 2003, P. subtilis Pedro & Camargo, 2003, P. vitae Pedro & Camargo, 2003, P. nigrior (Cockerell, 1925), P. sooretamae Pedro & Camargo, 2003 and P. littoralis Pedro & Camargo, 2003 are unknown. The species of Partamona build notable nest entrance structures, with special surfaces for incoming / exiting bees; some of them are extremely well-elaborated and ornamented, serving as flight orientation targets. All species endemic to western Ecuador to Mexico with known nesting habits (P. orizabaensis, P. peckolti, P. xanthogastra, P. bilineata, P. aequatoriana and P. musarum) build their nests in several substrates, non-associated with termitaria, such as cavities and crevices in walls, among roots of epiphytes and in bases of palm leaves, in abandoned bird nests, under bridges, and in other protected places, except P. peckolti that occasionally occupies termite nests. In South America, on the eastern side of the Andes, only P. epiphytophila and P. helleri nest among roots of epiphytes and other substrates, non-associated with termitaria. All other species studied (P. batesi, P. gregaria, P. pearsoni, P. ferreirai, P. chapadicola, P. nhambiquara, P. vicina, P. mourei, P. auripennis, P. combinata, P. cupira, P. mulata, P. ailyae, P. seridoensis, P. criptica and P. rustica) nest inside active termite nests, whether epigeous or arboreous. The only species that builds obligate subterranean nests, associated or not with termite or ant nests (Atta spp.) is P. testacea. Nests of Partamona have one vestibular chamber (autapomorphic for the genus) closely adjacent to the entrance, filled with a labyrinth of anastomosing pillars and connectives, made of earth and resins. One principal chamber exists for food and brood, but in some species one or more additional chambers are filled with food storage pots. In nests of P. vicina, there is one atrium or "false nest", between the vestibule and the brood chamber, which contains involucral sheaths, cells and empty pots. All structures of the nest are supported by permanent pillars made of earth and resins (another autapomorphy of the genus). The characters concerning nesting habits were coded and combined with morphological and biogeographic data, in order to hypothesize the evolutive scenario of the genus using cladistic methodology. The phylogenetic hypothesis presented is the following: (((((P. bilineata (P. grandipennis, P. xanthogastra)) (P. orizabaensis, P. peckolti)) (P. aequatoriana, P. musarum)) P. epiphytophila, P. yungarum, P. subtilis, P. vitae) (((((P. testacea (P. mourei, P. vicina)) (P. nigrior (P. auripennis, P. combinata))) (P. ferreirai (P. pearsoni (P. gregaria (P. batesi (P. chapadicola, P. nhambiquara)))))) ((((P. ailyae, P. sooretamae) P. cupira, P. mulata) P. seridoensis) P. criptica, P. rustica, P. littoralis)) P. helleri))). One area cladogram is presented. Dates of some vicariance / cladogenesis events are suggested. For bilineata / epiphytophila group, which inhabits the Southwestern Amazonia and the Chocó-Mexican biogeographical components, the origin of ancestral species is attributed to the Middle Miocene, when the transgressions of the Maracaibo and Paranense seas isolated the tropical northwestern South America from the eastern continental land mass. The next cladogenic event in the history of the bilineata / epiphytophila group is attributed to the Plio-Pleistocene, when the Ecuadorian Andes reached more than 3000 m, and the ancestral species was fragmented in two populations, one occupying the western Andes (ancestral species of the bilineata subgroup) and other the southwestern Amazon (ancestral species of the epiphytophila subgroup). Other aspects of the history of Partamona are also discussed.
Resumo:
Neotropical Meliponini: the genus Partamona Schwarz, 1939 (Hymenoptera, Apidae). The systematics and biogeography of Partamona Schwarz, a Neotropical genus of stingless bees (Meliponini, Apinae, Apidae), are revised. Seventeen new species are described: P. epiphytophila sp. nov., P. subtilis sp. nov., P. nhambiquara sp. nov., P. batesi sp. nov., P. yungarum sp. nov., P. vitae sp. nov., P. ferreirai sp. nov., P. gregaria sp. nov., P. auripennis sp. nov., P. nigrilabris sp. nov., P. combinata sp. nov., P. chapadicola sp. nov., P. seridoensis sp. nov., P. littoralis sp. nov., P. criptica sp. nov., P. rustica sp. nov. and P. sooretamae sp. nov. Partamona pseudomusarum Camargo, 1980, is considered as junior synonym of P. vicina Camargo, 1980. Types of P. grandipennis (Schwarz, 1951), P. xanthogastra Pedro & Camargo, 1996-1997, P. pearsoni (Schwarz, 1938), P. ailyae Camargo, 1980, P. pseudomusarum, P. vicina, P. mulata Moure in Camargo, 1980, P. aequatoriana Camargo, 1980, P. mourei Camargo, 1980, P. peckolti, (Friese, 1901), P. testacea (Klug, 1807), P. helleri (Friese, 1900) and P. musarum (Cockerell, 1917) were examined. Lectotypes of P. orizabaensis (Strand, 1919), and P. cupira (Smith, 1863) are designated. An identification key for the species and drawings of morphological characters are presented. A phylogenetic hypothesis, based mainly on morphological characters is proposed. Four groups are defined, considering the shape of mandible of workers and sternum VII of males: bilineata / epiphytophila group (western Amazon to México), including P. bilineata (Say), P. grandipennis, P. xanthogastra P. orizabaensis P. peckolti P. epiphytophila sp. nov., P. subtilis sp. nov., P. nhambiquara sp. nov., P. batesi sp. nov., P. yungarum sp. nov. and P. vitae sp. nov.; musarum group (Central Brazil, north of South America to Central America), including P. musarum, P. aequatoriana, P. vicina, P. mourei, P. pearsoni, P. ferreirai sp. nov., P. gregaria sp. nov. and P. testacea; nigrior group (Central Brazil to northeast of South America) including P. nigrior (Cockerell, 1925), P. auripennis sp. nov., P. nigrilabris sp. nov., P. combinata sp. nov., P. chapadicola sp. nov., P. seridoensis sp. nov. and P. littoralis sp. nov., and cupira group (southeastern and Central Brazil), including P. cupira, P. mulata, P. ailyae, P. sooretamae sp. nov., P. criptica sp. nov., P. rustica sp. nov. and P. helleri. Some geographic distribution patterns, congruent with that of other Meliponini bees, are commented.