213 resultados para Mitotic changes
Resumo:
The objective of the present study was to assess the effect of transcutaneous electrical diaphragmatic stimulation (TEDS) on different types of diaphragm muscle fibers. Male Wistar rats (8-12 weeks old) were divided into 2 experimental groups (N = 8 in each group): 1) control, 2) animals submitted to TEDS [frequency = 50 Hz; T ON/T OFF (contraction/relaxation time) = 2/2 s; pulse duration = 0.4 ms, intensity = 5 mA with a 1 mA increase every 3 min for 20 min] for 7 days. After completing this treatment period, the I, IIA, IIB, and IID diaphragm muscle fibers were identified using the mATPase technique. Statistical analysis consisted of the normality, homoscedasticity and t-tests (P < 0.05). There was a 19.6% (P < 0.05) reduction in the number of type I fibers and a 49.7% increase (P < 0.05) in type IID fibers in the TEDS group compared with the control group. An important result of the present study was that electrical stimulation with surface electrodes was efficient in altering the distribution of fibers in diaphragm muscle. This therapeutic resource could be used in the treatment of respiratory muscle alterations.
Resumo:
The aim of the present study was to determine whether training-related alterations in muscle mechanoreflex activation affect cardiac vagal withdrawal at the onset of exercise. Eighteen male volunteers divided into 9 controls (26 ± 1.9 years) and 9 racket players (25 ± 1.9 years) performed 10 s of voluntary and passive movement characterized by the wrist flexion of their dominant and non-dominant limbs. The respiratory cycle was divided into four phases and the phase 4 R-R interval was measured before and immediately following the initiation of either voluntary or passive movement. At the onset of voluntary exercise, the decrease in R-R interval was similar between dominant and non-dominant forearms in both controls (166 ± 20 vs 180 ± 34 ms, respectively; P > 0.05) and racket players (202 ± 29 vs 201 ± 31 ms, respectively; P > 0.05). Following passive movement, the non-dominant forearm of racket players elicited greater changes than the dominant forearm (129 ± 30 vs 77 ± 17 ms; P < 0.05), as well as both the dominant (54 ± 20 ms; P < 0.05) and non-dominant (59 ± 14 ms; P < 0.05) forearms of control subjects. In contrast, changes in R-R interval elicited by the racket players' dominant forearm were similar to that observed in the control group, indicating that changes in R-R interval at the onset of passive exercise were not attenuated in the dominant forearm of racket players. In summary, cardiac vagal withdrawal induced by muscle mechanoreflex stimulation is well-maintained, despite long-term exposure to training.
Resumo:
Diabetic retinopathy has been associated with cardiac autonomic dysfunction in both type 1 and type 2 diabetes mellitus (DM) patients. Heart rate (HR) changes during exercise testing indicate early alterations in autonomous tonus. The aim of the present study was to investigate the association of diabetic retinopathy with exercise-related HR changes. A cross-sectional study was performed on 72 type 2 and 40 type 1 DM patients. Autonomic dysfunction was assessed by exercise-related HR changes (Bruce protocol). The maximum HR increase, defined as the difference between the peak exercise rate and the resting rate at baseline, and HR recovery, defined as the reduction in HR from the peak exercise to the HR at 1, 2, and 4 min after the cessation of the exercise, were determined. In type 2 DM patients, lower maximum HR increase (OR = 1.62, 95%CI = 1.03-2.54; P = 0.036), lower HR recovery at 2 (OR = 2.04, 95%CI = 1.16-3.57; P = 0.012) and 4 min (OR = 2.67, 95%CI = 1.37-5.20; P = 0.004) were associated with diabetic retinopathy, adjusted for confounding factors. In type 1 DM, the absence of an increase in HR at intervals of 10 bpm each during exercise added 100% to the odds for diabetic retinopathy (OR = 2.01, 95%CI = 1.1-3.69; P = 0.02) when adjusted for DM duration, A1c test and diastolic blood pressure. In conclusion, early autonomic dysfunction was associated with diabetic retinopathy. The recognition of HR changes during exercise can be used to identify a high-risk group for diabetic retinopathy.