462 resultados para Larva de peixe
Resumo:
Foi realizado um trabalho para determinar o aproveitamento alimentar da farinha de carne e ossos (FCO), farinha de vísceras de aves (FVA) e farinha de peixe (FP) em tartaruga-da-amazônia, por meio dos coeficientes de digestibilidade aparente (CDA) da matéria seca (MS), proteína bruta (PB), extrato etéreo (EE) e energia bruta (EB). Os animais experimentais foram 136 filhotes provenientes do Projeto Quelônios da Amazônia, no estado do Mato Grosso, mantidos em caixas com renovação de água e temperatura média de 29ºC. Os CDA foram determinados com dietas contendo 0,1% do marcador óxido de crômio III (Cr2O3). Os CDA da MS, PB, EE e EB foram, respectivamente, de 79,10; 87,61; 93,83 e 79,61% para FCO; 92,45; 94,89; 96,55 e 92,71% para FV e 93,53; 95,13; 94,05 e 93,18% para FP. Os melhores coeficientes foram obtidos com a farinha de peixe e a farinha de vísceras de aves.
Resumo:
Com o principal objetivo de fornecer ferramentas para auxiliar na implementação do manejo sustentável de peixes ornamentais na Reserva de Desenvolvimento Sustentável Amanã, Amazonas, foi realizado o estudo da biologia reprodutiva de Heros efasciatus Heckel, 1840, um ciclídeo com potencial ornamental e com poucos trabalhos sobre a sua biologia e ecologia, apesar de já ser comercializado em algumas regiões amazônicas. Coletas bimestrais foram realizadas de fevereiro de 2006 a janeiro de 2007 em dez igarapés contribuintes do Lago Amanã e Urini, sendo utilizados três aparelhos de pesca (rede de arrasto, rapiché e armadilha tipo matapi) e ainda galhadas artificiais nas amostragens realizadas próximas aos lagos. Foram capturados 140 exemplares de H. efasciatus, sendo 50 fêmeas, 42 machos, e 46 indivíduos cujo sexo não foi identificado devido ao pequeno tamanho. O tipo de crescimento encontrado foi isométrico, sendo que o maior indivíduo observado apresentava 174 mm e o menor 14 mm. Os resultados encontrados auxiliarão na adoção de medidas de manejo, como a determinação de tamanhos mínimos de captura, superiores aos tamanhos médios de maturação (97 mm para as fêmeas) e o estabelecimento de períodos de defeso durante a época de sua reprodução (outubro a janeiro). A pequena abundância de indivíduos da espécie, quando comparada com o total de exemplares capturados (apenas 0,07%) e a baixa fecundidade média, de 2502 ovócitos, indica que se deve trabalhar anualmente apenas com um pequeno número de indivíduos, a fim de garantir a continuidade do estoque.
Resumo:
O presente estudo comparou os níveis plasmáticos de glicose, proteínas totais, uréia, triglicerídeos e colesterol, a contagem de eritrócitos, leucócitos e trombócitos entre alevinos e juvenis de Arapaima gigas (Osteoglociformes, Arapaimidae) de uma piscicultura semi-intensiva de Manaus, estado do Amazonas, Brasil. Os alevinos de A. gigas apresentaram níveis significativamente (p<0,05) menores de proteínas totais, triglicerídeos, uréia e Volume Corpuscular Médio (VCM) e maior concentração de glicose, colesterol e hemoglobina, contagem de eritrócitos, hematócrito e Concentração da Hemoglobina Corpuscular Média (CHCM) quando comparados aos juvenis. Porém, não houve diferença significativa (p>0,05) no número de trombócitos e leucócitos totais entre alevinos e juvenis. Os juvenis de A. gigas apresentaram menor quantidade de linfócitos e maior quantidade de monócitos, neutrófilos e eosinófilos, quando comparados aos alevinos. Em estudos futuros, espécimes de A. gigas com outras idades também deverão ser comparados para melhor entendimento dos efeitos da idade neste peixe amazônico, pois estas informações, além de possibilitarem uma melhor compreensão da fisiologia desta espécie, poderão auxiliar no estabelecimento de estratégias para seu manejo.
Resumo:
Montrichardia linifera (Araceae), conhecida popularmente como 'aninga', faz parte dos ecossistemas de várzea da Amazônia e da dieta natural de animais como peixe-boi, tartarugas, peixes, búfalo e gado. Com o objetivo de contribuir para o conhecimento químico e valor nutricional da mesma, folhas e frutos de M. linifera foram coletados às margens dos rios Guamá e Maratauíra, no Estado do Pará, Brasil. Em folhas e frutos foram realizadas análises de umidade, resíduo mineral fixo (cinzas), lipídios, proteínas, fibra bruta, concentração de carboidratos e valor calórico. A composição mineral (Ca, Mg, Cu, Fe, Zn e Mn) foi obtida por espectrometria de absorção atômica de chama. Observou-se que tanto as folhas quanto os frutos da aninga, apesar de calóricos (289,75 kcal e 355,12 kcal, respectivamente), possuem baixo valor protéico (0,44% e 0,24 %, respectivamente). As concentrações de manganês obtidas (folha = 3279,46 mg kg-1e fruto = 18151,53 mg kg-1) foram consideradas tóxicas, extrapolando o limite máximo tolerável para ruminantes (1000 mg kg-1). A M. linifera, tem capacidade de absorver e bioacumular grandes quantidades de Ca, Mg e Mn presentes no solo, o que torna inadequada a sua utilização exclusiva na alimentação de quelônios, bovinos e bubalinos, havendo necessidade de mais estudos para sua aplicação como parte da ração.
Resumo:
O tambaqui é a principal espécie de peixe cultivado na Amazônia Ocidental. Porém durante o processo produtivo, práticas de manejo são necessárias para o monitoramento do crescimento e estado geral da sanidade dos animais. Para isso os animais devem ser anestesiados para maior segurança no trabalho. O eugenol, componente majoritário do óleo de cravo, tem sido bastante utilizado como anestésico alternativo para peixes por ser um produto natural e de baixo custo. Entretanto, estudos tratando de respostas metabólicas em peixes tropicais expostos a diferentes anestésicos são ainda necessários. Dentro desse intuito, o presente trabalho avaliou respostas metabólicas, detectadas por meio de alterações de parâmetros sanguíneos e plasmáticos do tambaqui, exposto ao eugenol em banhos anestésicos simulados. Respostas típicas ao estresse foram detectadas devido ao manuseio imposto aos peixes durante a realização dos banhos anestésicos. O eugenol não reduziu totalmente essas reações ao estresse. Por outro lado, esse anestésico não provocou estresse adicional em exposições curtas de 15 min em concentrações próximas a 20 mg L-1.
Resumo:
O objetivo principal deste trabalho foi estudar a parasitofauna e a relação hospedeiro- parasito em tambaqui Colossoma macropomum cultivados em tanques-rede no Rio Matapi, município de Santana, estado do Amapá, região da Amazônia oriental, Brasil. Foram examinados 60 tambaquis, dos quais 96,7% estavam parasitados por protozoários Ichthyophthirius multifiliis (Ciliophora) e Piscinoodinium pillulare (Dinoflagellida), monogenoideas Mymarotheciun boegeri e Anacanthorus spathulatus (Dactylogyridae) e sanguessugas Glossiiphonidae gen. sp. (Hirudinea). Os maiores níveis de parasitismo foram causados por protozoários I. multifiliis e P. pillulare e os menores por sanguessugas Glossiiphonidae gen. sp. Porém, os índices de infestação não tiveram efeitos na saúde dos peixes hospedeiros, uma vez que o fator de condição relativo (Kn) não foi estatisticamente (p<0,05) correlacionado com a intensidade desses parasitos. Este foi o primeiro relato da ocorrência de I. multifiliis e P. pillulare em C. macropomum cultivados em tanques-rede na Amazônia brasileira.
Resumo:
O objetivo deste estudo foi avaliar o desempenho produtivo de juvenis de tambaqui (Colossoma macropomum), alimentados com níveis crescentes de farinha de crueira de mandioca, Manihot esculenta (0%, 20%, 40%, 60%, 80%, 100%), como substituto do milho (Zea mays). Os peixes (peso médio inicial de 6,6 ± 0,1 g) foram distribuídos aleatoriamente em 24 grupos (20 peixes/grupo) e alimentados com as dietas experimentais em quatro repetições para avaliação da performance de crescimento, eficiência alimentar, composição corporal e os custos de produção. As performances de crescimento não foram afetados pelos tratamentos. O teor de lipídio no músculo foi diferentemente significativo em peixes alimentados com 40% e 100% em relação aos outros tratamentos. O custo de produção de milho diminuiu linearmente com a substituição. O valor da dieta diminuiu de R $ 1,43 kg-1 a R $ 1,21 kg-1 e o peixe de R $ 1,54 kg-1 a R $ 1,30 peixe kg-1. Concluiu-se que o milho pode ser totalmente substituído por farinha de crueira de mandioca na dieta de juvenil de tambaqui, sem prejudicar o seu desempenho.
Resumo:
O tambaqui (Colossoma macropomum) é um peixe onívoro, natural da bacia amazônica, que possui elevado valor comercial. Características de rusticidade e desempenho produtivo destacam esta espécie para criação em cativeiro. Contudo, em criações comerciais de peixes, os custos com alimentação podem corresponder de 60 a 80% dos custos totais de produção, sendo a proteína o nutriente mais caro da dieta. O objetivo deste trabalho foi avaliar o desempenho produtivo de juvenis de tambaqui alimentados com rações contendo farinha de folha de leucena como fonte protéica. 240 juvenis foram distribuídos em 12 aquários experimentais (350 L), em um delineamento experimental inteiramente casualizado com quatro tratamentos (0%, 8%, 16%, 24% de inclusão de farinha de folha de leucena na ração) e três repetições. Foram determinados o ganho de peso, conversão alimentar aparente, taxa de crescimento específico, taxa de eficiência protéica e custo de produção do quilograma de peso vivo ganho. Para as variáveis estudadas, não houve diferença significativa (p>0,05) entre os tratamentos, indicando que é possível incluir até 24% de farinha de folha de leucena em rações para juvenis de tambaqui, sem comprometimento das variáveis estudadas, embora a substituição não tenha representado redução no custo de produção do quilograma de peixe.
Resumo:
A piscicultura moderna baseia-se no melhor sistema de criação, qualidade ambiental e ganhos de produtividade. Neste experimento foi analisado o efeito da densidade de cultivo na qualidade da água, e posteriormente, no desempenho zootécnico dos tambaquis (Colossoma macropomum). Os juvenis de tambaqui com 13,6 ± 4,1g de peso médio foram mantidos em canais de abastecimento com 40 metros de extensão, dividido em quinze seções de um metro cúbico. Foram testadas três densidades (60, 90 e 120 peixe m-³) em delineamento experimental inteiramente casualizado, com cinco repetições. Os resultados dos parâmetros físico-químicos da água foram: temperatura variou de 28,0-31,7 °C, o oxigênio dissolvido de 5,9-7,4 mg L-1, o pH de 6,8-7,5, a concentração média de amônia ficou ao redor de 0,1-0,3 mg L-1. Os valores de alcalinidade e dureza foram de 24,0-34,0 mg L-1 (CaCO3) e 24,0-37,0 mg L-1 (CaCO3, MgCO3). A condutividade elétrica variou entre 0,07-106 µS cm-1 e a concentração do total de sólidos dissolvidos ficou entre 18,37-53,00 mg L-1. Já o ganho de peso final foi de 35,76, 32,95 e 36,25 g para as densidades de 60, 90 e 120 peixes m-3, respectivamente, não sendo verificadas diferenças significativas nos tratamentos avaliados. Os dados do presente estudo abrem precedentes para que cultivo de peixes em canais de irrigação possa ser integrado com outras culturas, maximizando o uso da água.
Resumo:
Os estudos sobre os parasitos e doenças parasitárias são de grande interesse para a piscicultura, uma vez que podem afetar o crescimento dos peixes. O objetivo deste estudo foi investigar a fauna parasitária e relação parasito-hospedeiro em Colossoma macropomum x Piaractus brachypomus (tambatinga) de 10 pisciculturas do estado do Amapá, Amazônia. Dos 503 peixes examinados, 63,1% estavam parasitados e 49.299.189 parasitos foram coletados, tais como Ichthyophthirius multifiliis, Piscinoodinium pillulare, Trichodina sp., Tetrahymena sp., Anacanthorus spathulatus, Linguadactyloides brinkmanni, Mymarothecium boegeri, Notozothecium janauachensis, Procamallanus (Spirocamallanus) inopinatus, Neoechinorhynchus buttnerae e Perulernaea gamitanae. Porém, a dominância foi de I. multifiliis, seguida de P. pillulare e monogenoideas, parasitos que apresentaram padrão de dispersão agregado juntamente com P. gamitanae. Houve correlação positiva do comprimento dos hospedeiros com a prevalência parasitária total, bem como do tamanho dos peixes com a abundância de I. multiliis, P. pillulare, monogenoideas e P. gamitanae, mas os níveis infecção não influenciaram o fator de condição relativo dos hospedeiros. A ocorrência de ectoparasitos foi favorecida pelo manejo e pobre condição sanitária das pisciculturas, mas a presença de espécies de endoparasitos foi devido ao abastecimento dos viveiros com água provenientes de corpos de água naturais. Este foi primeiro relato de I. multiliis, P. pillulare, Trichodina sp., Tetrahymena sp., A. spathulatus, N. janauachensis, N. buttnerae e P. (S.) inopinatus para tambatinga no Brasil.
Resumo:
RESUMOA larvicultura é uma das etapas mais críticas do desenvolvimento dos peixes e o seu sucesso está diretamente relacionado ao manejo alimentar, que pode proporcionar maiores sobrevivência e crescimento. Objetivou-se avaliar o tempo de transição alimentar e de fornecimento de meta-náuplios de Artemiaspp (MNA) na larvicultura do acará-bandeira. Dois experimentos foram conduzidos em delineamento inteiramente casualizado com cinco tratamentos e quatro repetições. Em cada experimento foram utilizados 540 peixes distribuídos em 20 aquários com 2 L. No primeiro experimento, avaliaram-se os períodos de transição alimentar (MNA + ração) por 1, 2, 3, 4 e 5 dias. No segundo experimento, avaliou-se o período de fornecimento de MNA por 5, 10, 15, 20 e 25 dias. Foram avaliados: ganho de peso, taxas de crescimento e desenvolvimento específico, sobrevivência e uniformidade do lote (apenas no experimento para avaliar o tempo de fornecimento de MNA). Não houve efeito significativo dos diferentes períodos de transição alimentar sobre as variáveis de crescimento (p>0,05), porém a sobrevivência foi maior (p<0,05) nos tratamentos compostos por 3, 4 e 5 dias de alimentação conjunta. Em relação ao tempo de fornecimento de MNA, foram observados piores resultados (p<0,05) quando o tempo de fornecimento do alimento vivo foi menor (5, 10 e 15 dias). Os animais que foram alimentados com MNA antes da transição alimentar, por mais tempo (20 e 25 dias), apresentaram os melhores resultados de crescimento (p<0,05). Portanto, recomenda-se uma transição alimentar de três dias e um fornecimento de MNA por 20 dias para realizar a substituição total do alimento vivo pela ração.
Resumo:
RESUMO O estudo da biologia reprodutiva é importante para determinar medidas protetivas visando à manutenção dos estoques pesqueiros. Desta forma, o presente estudo teve como objetivo determinar os aspectos da reprodução de Hassar affinis no Lago de Viana, Baixada Maranhense, Maranhão, Brasil. Os 147 espécimes foram provenientes da pesca comercial, coletados no período de fevereiro de 2012 a janeiro de 2013. Em laboratório, procedeu-se com a pesagem e medidas de cada indivíduo e posteriormente foi feita uma incisão ventro-longitudinal a fim de observar macroscopicamente as gônadas. Em seguida, foram fixadas em Solução de Bouin para análise microscópica e em Solução de Gilson para análise da fecundidade. A alometria negativa foi registrada para ambos os sexos, indicando maior incremento em comprimento do que em peso. A proporção sexual para o período total foi de 3,4 fêmeas para cada 1 macho. Houve maior intensidade reprodutiva nos bimestres fevereiro/março e abril/maio, indicando o período reprodutivo da espécie. Estima-se fecundidade absoluta média de 47.211 ovócitos. A primeira maturidade sexual é alcançada com 11,52 cm. A partir desses dados, portanto, são sugeridas medidas de gerenciamento, como o estabelecimento do período de reprodução da espécie durante os meses de fevereiro a maio, definição do tamanho mínimo de captura de 11,5 cm e, além disso, sugere-se o desenvolvimento de outros trabalhos com periodicidade mensal.
Resumo:
Fundamento: A síndrome metabólica é um transtorno complexo representado por um conjunto de fatores de risco cardiovascular. A adoção de um estilo de vida saudável está fortemente relacionada à melhora da Qualidade de Vida e interfere de forma positiva no controle dos fatores de risco presentes nessa condição clínica. Objetivo: Avaliar o efeito de um programa de modificação do estilo de vida sobre o Escore de Risco Cardiovascular Global de Framingham em indivíduos com síndrome metabólica. Método: Trata-se de uma subanálise de um ensaio clínico randomizado, controlado, cegado, com duração de três meses. Os participantes foram randomizados em quatro grupos: intervenção nutricional + placebo (INP), intervenção nutricional + suplementação de ácidos graxos ômega 3 (3 g/dia de óleo de peixe) (INS3), intervenção nutricional + atividade física + placebo (INEP) e intervenção nutricional + atividade física + suplementação de ácidos graxos ômega 3 (INES3). O Escore de Risco Cardiovascular Global de Framingham de cada indivíduo foi calculado antes e após a intervenção. Resultados: Participaram do estudo 70 indivíduos. Observou-se uma redução da média do escore após a intervenção de forma geral (p < 0,001). Obteve-se uma redução para risco intermediário em 25,7% dos indivíduos. Após a intervenção, observou-se redução significativa (p < 0,01) da "idade vascular", sendo esta mais expressiva nos grupos INP (5,2%) e INEP (5,3%). Conclusão: Todas as intervenções propostas produziram efeito benéfico para a redução do escore de risco cardiovascular. O presente estudo reforça a importância da modificação do estilo de vida na prevenção e no tratamento das doenças cardiovasculares.
Resumo:
A preliminary account on the normal development of the imaginai discs in holometabolic Insects is made to serve as an introduction to the study of the hereditary homoeosis. Several facts and experimental data furnished specially by the students of Drosophila are brought here in searching for a more adequate explanation of this highly interesting phenomenon. The results obtained from the investigations of different homoeotic mutants are analysed in order to test Goldschmidt's theory of homoeosis. Critical examination of the basis on which this theory was elaborated are equally made. As a result from an extensive theoretical consideration of the matter and a long discussion of the most recent papers on this subject the present writer concludes that the Goldschmidt explanation of the homoeotic phenomena based on the action of diffusing substances produced by the genes, the "evocators", and on the alteration of the normal speed of maturation of the imaginai discs equally due to the activity of the genes, could not be proved and therefore should be abandoned. In the same situation is any other explanation like that of Waddington or Villee considered as fundamentally identical to that of Goldschmidt. In order to clear the problem of homoeosis in terms which seem to put the phenomenon in complete agreement with the known facts the present writer elaborated a theory first published a few years ago (1941) based entirely on the assumption that the imaginai discs are specifically determined by some kind of substances, probably of chemical nature, contained in the cytoplam of the cells entering in the consti- tution of each individual disc. These substances already present in the blastem of the egg in which they are distributed in a definite order, pass to different cells at the time the blastem is transformed into blastoderm. These substances according to their organogenic potentiality may be called antenal-substance, legsubstance, wing-substance, eye-substance, etc. The hipoderm of the embryo resulting from the multiplication of the blastoderm cells would be constituted by a series of cellular areas differing from each other in their particular organoformative capacity. Thus the hypoderm giving rise to the imaginai discs, it follows that each disc must have the same organogenic power of the hypodermal area it came from. Therefore the discs i*re determinated since their origin by substances enclosed in the cytoplasm of their cells and consequently can no longer alter their potentiality. When an antennal disc develops into a leg one can conclude that this disc in spite of its position in the body of the larva is not, properly speaking, an antennal disc but a true leg disc whose cells instead of having in their cytoplasm the antennal substance derived from the egg blastem have in its place the leg-substance. Now, if a disc produces a tarsus or an antenna or even a compound appendage partly tarsus-like, partly antenna-like, it follows tha,t both tarsal and antennal substances are present in it. The ultimate aspect of the compound structure depends upon the reaction of each kind of substance to the different causes influencing development. For instance, temperature may orient the direction of development either lowards arista or tarsus, stimulating, or opposing to the one or the other of these substances. Confering to the genes the faculty of altering the constitution of the substances containing in the cytoplasm forming the egg blastem or causing transposition of these substances from one area to another or promoting the substitution of a given substance by a different one, the hereditary homoeocis may be easily explained. However, in the opinion of the present writer cytoplasm takes the initiative in all developmental process, provoking the chromosomes to react specifically and proportionally. Accordingly, the mutations causing homoeotic phenomena may arise independently at different rime in the cytoplasm and in the chromosomes. To the part taken by the chromosomes in the manifestation of the homoeotic characters is due the mendalian ratio observed in homoeotic X normal crosses. Expression, in itself, is mainly due to the proportion of the different substances in the cells of the affected discs. Homoeotic phenomena not presenting mendelian ratio may appear as consequence of cytoplasmic mutation not accompanied by chromosomal mutation. The great variability in the morphology of the homoeotic characteres, some individual being changed towards an extreme expression of the mutant phenotype while others in spite of their homozigous constitution cannot be distinguished from the normal ones, strongly supports the interpretation based on the relative proportion of the determining substances in the discs. To the same interpretation point also asymetry and other particularities observed in the exteriorization of the phenomenon. In conformity with this new conception homoeosis should not prove homology of Insect appendages (Villee 1942) since a more replacement of substances may cause legs to develop in substitution of the wings, as it was already observed (requiring confirmation in the opinion of Bateson 1894, p. 184) and no one would conclude for the homology of these organs in the usual meaning of the term.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.