383 resultados para Equações diferenciais não-lineares - Solução analítica aproximada
Resumo:
Chemically modified electrodes based on hexacyanometalate films are presented as a tool in analytical chemistry. Use of amperometric sensors and/or biosensors based on the metal-hexacyanoferrate films is a tendency. This article reviews some applications of these films for analytical determination of both inorganic (e.g. As3+, S2O3(2-)) and organic (e.g. cysteine, hydrazine, ascorbic acid, gluthatione, glucose, etc.) compounds.
Resumo:
The equilibria, the spectra and the identities of the species of Cr(VI) that are present in aqueous solution have long been an active subject of discussion in the literature. In this paper, three different chemometric methodologies are applied to sets of UV/Visible spectra of aqueous Cr(VI) solutions, in order to solve a chemical system where there is no available information concerning the composition of the samples nor spectral information about the pure species. Imbrie Q-mode factor analysis, followed by varimax rotation and Imbrie oblique projection, were used to estimate the composition of Cr(VI) equilibrium solutions and, by combining these results with the k-matrix method, to obtain the pure spectra of the species. Evolving factor analysis and self modeling curve resolution were used to confirm the number of the species and the resolution of the system, respectively. Sets of 3.3×10-4 and 3.3×10-5 mol L-1 Cr(VI) solutions, respectively, were analyzed in the pH range from 1 to 12. Two factors were identified, which were related to the chromate ion (CrO4(2-)) and bichromate ion (HCrO4-). The pK of the equilibrium was estimated as 5.8.
Resumo:
Calculation of uncertainty of results represents the new paradigm in the area of the quality of measurements in laboratories. The guidance on the Expression of Uncertainty in Measurement of the ISO / International Organization for Standardization assumes that the analyst is being asked to give a parameter that characterizes the range of the values that could reasonably be associated with the result of the measurement. In practice, the uncertainty of the analytical result may arise from many possible sources: sampling, sample preparation, matrix effects, equipments, standards and reference materials, among others. This paper suggests a procedure for calculation of uncertainties components of an analytical result due to sample preparation (uncertainty of weights and volumetric equipment) and instrument analytical signal (calibration uncertainty). A numerical example is carefully explained based on measurements obtained for cadmium determination by flame atomic absorption spectrophotometry. Results obtained for components of total uncertainty showed that the main contribution to the analytical result was the calibration procedure.
Resumo:
Under the chromatographic point of view, the physico-chemical properties of a supercritical fluid are intermediate to those of the gases and liquids. Many times they approach the best features of each one, as for example, the solubilization power of liquids and low viscosity of gases. The thermodynamic definitions and main physico-chemical features of a supercritical fluid will be presented in this article. The use of supercritical fluids in analytical chemistry has been extremely modest in Brazil, even considering the enormous potential of their applications, and their use in several techniques, such as chromatography (SFC) and supercritical fluid extration (SFE). This article series is intended to discuss the historical evolution, instrumentation features and potential and limitations of the supercritical fluid use in analytical chemistry. A special focus will be centered on chromatography and extration techniques using supercritical fluids.
Resumo:
Ionic liquids, in specially those based on the 1,3-dialkylimidazolium cation, have been receiving special attention in differents areas due to their interesting physical-chemical properties. In this work, some aspects of their structure (in both solid and liquid state) and its relationships with their properties are reviewed.
Resumo:
The implementation of a quality assurance program in chemical analytical laboratories, that can aid in demonstrate the quality of their results, is an issue of great concern. As a consequence, it is mandatory to give an estimate of the confidence that can be placed on the obtained results. An useful measure of this confidence is the measurement uncertainty and, nowadays, a result without the corresponding uncertainty statement cannot be considered reliable. This paper presents a summary of the most important mechanisms for the evaluation and reporting of the measurement uncertainty. In implementing these principles, it is described the measurement uncertainty estimation associated with the preparation of a uranium elemental reference solution at 2.4 mg.kg-1 from the corresponding certified reference material (in this example at 1003 mg.kg-1).
Resumo:
The determination of the physical-chemical mercury speciation in tropical coastal waters using the derivatization technique with CVAFS detection was optimized. This methodology is able to separate the elementary, reactive, organic and total mercury phases with low operational costs. The importance of bromide chloride solution, the diluted aqua regia, used as the oxidative solution, and different compositions of the reductive solution of stannous chloride were tested and the better results for coastal waters are presented. The recuperation of the sum of the different phases ranges from 80 to 94% of the total Hg content in duplicates of different marine samples. The optimized methodology permits important studies on the mercury cycle in the coastal environment.
Resumo:
The aim of this work was to propose two different didactic experiments, which can be used in practical classes of analytical chemistry courses. More flexible experiments related to the theme, giving some options to the instructor are proposed. In this way, the Experiment 1 was divided in two parts. In the first one, the visualization of two distinct phases separation is emphasized: the rich and the poor phases in surfactant. In the second part, the metal pre-concentration (Co as example) is emphasized. The Experiment 2 has three different parts. In the first one, the complex formation is pointed out, in the second one, the pH influence is shown and in the last one, the influence of the complexation time is demonstrated.
Resumo:
The use of pesticides in agriculture presents some problems to ecosytems as a consequence of their remaining in the environment. Conventional methods for environmental decontamination sometimes just transfer these residues from one place to another. The use of gamma radiation from cobalt-60 to induce 2,4-D degradation in aqueous solution containing humic acid was studied. Results show that the herbicide is completely degraded after treatment with a 30 kGy dose. There were decreases in the degradation of the 2,4-D when humic acid was added at all doses. Some radiolytic products are proposed. The 2,4-D radiolytic yields (G) from 2,4-D were calculated.
Resumo:
In this work the CCl4 degradation in aqueous solution by sonication with 40 kHz commercial ultrasonic bath was investigated. Sonochemical degradation of CCl4 occur by the cleavage of C-Cl bond into the cavitation bubbles. Oxidation reactions and the pH decreasing in the bulk solution during sonication were attributed to chlorine radicals produced by CCl4 sonolysis, leading to increase the chloride concentration. The formation of oxidizing agents was evaluated employing I- and Fe2+ ion solutions, converted to I2 and HIO, and Fe3+, respectively. The amount of chloride and hydronium ions produced after 3 min of irradiation was 11.52 and 12.19 mmol, respectively, suggesting that the same reaction was involved to produce these ions. Fe2+ oxidation and the pH variation were monitored to estimate chlorine radical formation rate in the presence (0.107 mumol s-1) and absence (0.092 mumol s-1) of metallic ion during the first minute of sonication.
Resumo:
In this work, the fruit extracts of Morus nigra - mulberry, Syzygium cuminii - jambolão, Vitis vinifera ¾ grape, Myrciaria cauliflora - jabuticaba are suggested as pH indicators in the form of either solutions or paper. The pH indicator solutions were prepared by soaking the fruits or their peels in ethanol 1:3 (m/V) for 24 h, followed by simple filtration. The pH indicator papers were prepared by imersion of the qualitative filter paper strips in the pH indicator solutions. The different pH leads to color changes in the indicator solutions or papers and it can be used for teaching elementary chemistry concepts.
Resumo:
A series of experiments were performed in order to demonstrate to undergraduate students or users of the differential scanning calorimetry (DSC), that several factors can influence the qualitative and quantitative aspects of DSC results. Saccharin, an artificial sweetner, was used as a probe and its thermal behavior is also discussed on the basis of thermogravimetric (TG) and DSC curves.
Resumo:
This paper is a translation from IUPAC nomenclature document by K. Danzer and L. A. Currie (Pure Appl. Chem., 1998, 70(4), 993-1014). Its goal is to establish an uniform and meaningful approach to terminology (in Portuguese), notation, and formulation for calibation in analytical chemistry. In this first part, general fundamentals of calibration are presented, namely for both relationships of qualitative and quantitative variables (relations between variables characterizing certain types analytes of the measured function on the other hand and between variables characterizing the amount or concentration of the chemical species and the intensities of the measured signals, on the other hand). On this basis, the fundamentals of the common single component calibration (Univariate Calibration) which models the relationship y = f(x) between the signal intensities y and the amounts or concentrations x of the analyte under given conditions are represented. Additional papers will be prepared dealing with extensive relationships between several intensities and analyte contents, namely with multivariate calibrations and with optimization and experimental design.
Resumo:
Relevant aspects of proposed mechanisms of the chemiluminescent reaction of luminol are presented and commented to emphasize its perspectives for kinetic analysis. A careful search for analytical applications of this reaction is discussed in order to point out new trends of the studies. Kinetic analysis using the luminol reaction is proposed to be a very attractive due to the good performance of the reaction in analytical applications and the positive characteristics of kinetic analysis, such as low cost and sensibility. It is pointed out that kinetic analysis using the chemiluminescent reaction of luminol should be encouraged.
Resumo:
A Fortran77 program, SSPBE, designed to solve the spherically symmetric Poisson-Boltzmann equation using cell model for ionic macromolecular aggregates or macroions is presented. The program includes an adsorption model for ions at the aggregate surface. The working algorithm solves the Poisson-Boltzmann equation in the integral representation using the Picard iteration method. Input parameters are introduced via an ASCII file, sspbe.txt. Output files yield the radial distances versus mean field potentials and average molar ion concentrations, the molar concentration of ions at the cell boundary, the self-consistent degree of ion adsorption from the surface and other related data. Ion binding to ionic, zwitterionic and reverse micelles are presented as representative examples of the applications of the SSPBE program.