213 resultados para Biophysical characterization
Resumo:
The 3-hydroxykynurenine transaminase (3-HKT) gene plays a vital role in the development of malaria parasites by participating in the synthesis of xanthurenic acid, which is involved in the exflagellation of microgametocytes in the midgut of malaria vector species. The 3-HKT enzyme is involved in the tryptophan metabolism of Anophelines. The gene had been studied in the important global malaria vector, Anopheles gambiae. In this report, we have conducted a preliminary investigation to characterize this gene in the two important vector species of malaria in India, Anopheles culicifacies and Anopheles stephensi. The analysis of the genetic structure of this gene in these species revealed high homology with the An. gambiae gene. However, four non-synonymous mutations in An. stephensi and seven in An. culicifacies sequences were noted in the exons 1 and 2 of the gene; the implication of these mutations on enzyme structure remains to be explored.
Resumo:
The present study investigated the prevalence of mutations in the -550 (H/L) and -221 (X/Y) mannose-binding lectin (MBL) gene promoter regions and their impact on infection by human immunodeficiency virus 1 (HIV-1) in a population of 128 HIV-1 seropositive and 97 seronegative patients. The allele identification was performed through the sequence-specific primer polymerase chain reaction method, using primer sequences specific to each polymorphism. The evolution of the infection was evaluated through CD4+ T-lymphocyte counts and plasma viral load. The allele and haplotype frequencies among HIV-1-infected patients and seronegative healthy control patients did not show significant differences. CD4+ T-lymphocyte counts showed lower levels among seropositive patients carrying haplotypes LY, LX and HX, as compared to those carrying the HY haplotype. Mean plasma viral load was higher among seropositive patients with haplotypes LY, LX and HX than among those carrying the HY haplotype. When promoter and exon 1 mutations were matched, it was possible to identify a significantly higher viral load among HIV-1 infected individuals carrying haplotypes correlated to low serum levels of MBL. The current study shows that haplotypes related to medium and low MBL serum levels might directly influence the evolution of viral progression in patients. Therefore, it is suggested that the identification of haplotypes within the promoter region of the MBL gene among HIV-1 infected persons should be further evaluated as a prognostic tool for AIDS progression.
Resumo:
Protein glycosylation pathways, commonly found in fungal pathogens, offer an attractive new area of study for the discovery of antifungal targets. In particular, these post-translational modifications are required for virulence and proper cell wall assembly in Candida albicans, an opportunistic human pathogen. The C. albicans MNS1 gene is predicted to encode a member of the glycosyl hydrolase family 47, with 1,2-mannosidase activity. In order to characterise its activity, we first cloned the C. albicans MNS1 gene into Escherichia coli, then expressed and purified the enzyme. The recombinant Mns1 was capable of converting a Man9GlcNAc2 N-glycan core into Man8GlcNAc2 isomer B, but failed to process a Man5GlcNAc2-Asn N-oligosaccharide. These properties are similar to those displayed by Mns1 purified from C. albicansmembranes and strongly suggest that the enzyme is an ±1,2-mannosidase that is localised to the endoplasmic reticulum and involved in the processing of N-linked mannans. Polyclonal antibodies specifically raised against recombinant Mns1 also immunoreacted with the soluble ±1,2-mannosidases E-I and E-II, indicating that Mns1 could share structural similarities with both soluble enzymes. Due to the high degree of similarity between the members of family 47, it is conceivable that these antibodies may recognise ±1,2-mannosidases in other biological systems as well.