225 resultados para - tuberculosis
Resumo:
The genome of Mycobacterium tuberculosis H37Rv contains three contiguous genes (plc-a, plc-b and plc-c) which are similar to the Pseudomonas aeruginosa phospholipase C (PLC) genes. Expression of mycobacterial PLC-a and PLC-b in E. coli and M. smegmatis has been reported, whereas expression of the native proteins in M. tuberculosis H37Rv has not been demonstrated. The objective of the present study was to demonstrate that native PLC-a is expressed in M. tuberculosis H37Rv. Sera from mice immunized with recombinant PLC-a expressed in E. coli were used in immunoblots to evaluate PLC-a expression. The immune serum recognized a 49-kDa protein in immunoblots against M. tuberculosis extracts. No bands were visible in M. tuberculosis culture supernatants or extracts from M. avium, M. bovis and M. smegmatis. A 550-bp DNA fragment upstream of plc-a was cloned in the pJEM12 vector and the existence of a functional promoter was evaluated by detection of ß-galactosidase activity. ß-Galactosidase activity was detected in M. smegmatis transformed with recombinant pJEM12 grown in vitro and inside macrophages. The putative promoter was active both in vitro and in vivo, suggesting that expression is constitutive. In conclusion, expression of non-secreted native PLC-a was demonstrated in M. tuberculosis.
Resumo:
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis has increased the need for rapid drug susceptibility tests, which are needed for adequate patient treatment. The objective of the present study was to evaluate the mycobacteria growth indicator tube (MGIT) system to detect multidrug-resistant M. tuberculosis strains. The MGIT system was compared with two standard methods (proportion and resistance ratio methods). One hundred clinical M. tuberculosis isolates [25 susceptible to isoniazid (INH) and rifampicin (RIF), 20 resistant to INH, 30 resistant to INH-RIF, and 25 resistant to INH-RIF and other drugs] obtained in the State of São Paulo were tested for INH and RIF susceptibility. Full agreement among the tests was found for all sensitive and all INH-resistant strains. For RIF-resistant strains results among the tests agreed for 53 (96.4%) of 55 isolates. Results were obtained within 6 days (range, 5 to 8 days), 28 days and 12 days when using MGIT, the proportion method and the resistance ratio methods, respectively. The MGIT system presented an overall agreement of 96% when compared with two standard methods. These data show that the MGIT system is rapid, sensitive and efficient for the early detection of multidrug-resistant M. tuberculosis.
Resumo:
Much effort has been devoted to the identification of immunologically important antigens of Mycobacterium tuberculosis and to the combination of target antigens to which antibodies from serum of tuberculous patients could react specifically. We searched for IgG antibodies specific for antigens of 45 to 6 kDa obtained after sonication of the well-characterized wild M. tuberculosis strain in order to detect differences in the antibody response to low molecular weight antigens from M. tuberculosis between patients with pulmonary tuberculosis and contacts. Specific IgG antibodies for these antigens were detected by Western blot analysis of 153 serum samples collected from 51 patients with confirmed pulmonary tuberculosis. Three samples were collected from each patient: before therapy, and after 2 and 6 months of treatment. We also analyzed 25 samples obtained from contacts, as well as 30 samples from healthy individuals with known tuberculin status, 50 samples from patients with other lung diseases and 200 samples from healthy blood donors. The positive predictive value for associated IgG reactivity against the 6-kDa and 16-kDa antigens, 6 and 38 kDa, and 16 and 38 kDa was 100% since simultaneous reactivity for these antigens was absent in healthy individuals and individuals with other lung diseases. This association was observed in 67% of the patients, but in only 8% of the contacts. The humoral response against antigens of 16 and 6 kDa seems to be important for the detection of latent tuberculosis since the associated reactivity to these antigens is mainly present in individuals with active disease.
Resumo:
Pathogens causing tuberculosis and other chronic infectious diseases of major public health importance commonly have complex mechanisms involved in their persistence in the host despite specific and sometimes strong immune responses. These diseases are also associated with the lack of efficient vaccines, difficult therapeutics and a high mortality rate among susceptible individuals. Here, we will review features of the host immune response that contribute to the occurrence of disease. In addition, we propose that the immune responses observed in tuberculosis cannot be interpreted solely on the basis of a Th1-Th2 counter-regulatory paradigm since there is growing evidence that natural regulatory T cells may play an important role in the regulation of host immune responses against Mycobacterium tuberculosis. Thus, the development of more effective vaccines against this bacterial disease should take into account the role of natural regulatory T cells in the progression to severe disease and persistence of infection. Finally, new treatments based on manipulation of regulatory T cells should be investigated.
Resumo:
A 42-year-old male complaining of thoracic spine pain was admitted to the hospital for evaluation. An X-ray and computer tomography of the thoracic spine showed spondylodiscitis of the L3 lumbar and L2-L3 intervertebral disk. The tuberculin skin test (PPD) was strongly positive. A radioscopy-guided fine needle aspirate of the affected area was cultured but did not reveal the cause of the disease. Two biopsy attempts failed to reveal the cause of the disease by culturing or by acid-fast-resistant staining (Ziehl Neelsen) of the specimens. A third biopsy also failed to detect the infectious agent by using microbiological procedures, but revealed the presence of a 245-bp amplicon characteristic of the Mycobacterium tuberculosis complex after PCR of the sample. The result demonstrates the efficacy of PCR for the identification of M. tuberculosis in situations in which conventional diagnosis by culturing techniques or direct microscopy is unable to detect the microorganism. Following this result the patient was treated with the antituberculous cocktail composed by rifampicin, pirazinamide and isoniazid during a six-month period. At the end of the treatment the dorsalgia symptoms had disappeared.
Resumo:
Costimulatory and antigen-presenting molecules are essential to the initiation of T cell immunity to mycobacteria. The present study analyzed by immunocytochemistry, using monoclonal antibodies and alkaline phosphatase-anti-alkaline phosphatase method, the frequency of costimulatory (CD86, CD40, CD40L, CD28, and CD152) and antigen-presenting (MHC class II and CD1) molecules expression on human lung cells recovered by sputum induction from tuberculosis (TB) patients (N = 22) and non-TB controls (N = 17). TB cases showed a statistically significant lower percentage of HLA-DR+ cells than control subjects (21.9 ± 4.2 vs 50.0 ± 7.2%, P < 0.001), even though similar proportions of TB cases (18/22) and control subjects (16/17, P = 0.36) had HLA-DR-positive-stained cells. In addition, fewer TB cases (10/22) compared to control subjects (16/17) possessed CD86-expressing cells (P = 0.04; OR: 0.05; 95%CI = 0.00-0.51), and TB cases expressed a lower percentage of CD86+ cells (P = 0.04). Moreover, TB patients with clinically limited disease (£1 lobe) on chest X-ray exhibited a lower percentage of CD86-bearing cells compared to patients with more extensive lung disease (>1 lobe) (P = 0.02). The lower expression by lung cells from TB patients of HLA-DR and CD86, molecules involved in antigen presentation and activation of T cells, may minimize T cell recognition of Mycobacterium tuberculosis, fostering an immune dysfunctional state and active TB.
Resumo:
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-α, TGF-β, IFN-γ, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-γ genes, to generate resistance or susceptibility to M. tuberculosis infection.
Resumo:
Assuming that the IS6110-restriction fragment length polymorphism (RFLP) changes at a constant rate of 3.2 years, this methodology was applied to demonstrate, for the first time, variant patterns of Mycobacterium tuberculosis (MTB) in multiple isolates obtained at short time intervals from sputum and blood of an HIV+ patient with multiple admissions to the Emergency Room and to the multidrug-resistant tuberculosis (MDR-TB) Reference Center of a secondary-care hospital in Rio de Janeiro, Brazil. In sputum, the IS6110-RFLP appeared in isolates with two variant patterns with 10 and 13 IS6110 copies. However, blood presented only the pattern corresponding to 10 copies, suggesting compartmentalization. With regard to the exact match of 10 of 13 bands, this may be a subpopulation with the same clonal origin and this may be related to the IS6110 transposition. A susceptibility test demonstrated an MDR profile (INH R, RIF R, SM R, and EMB R), with the sputum isolate also exhibiting EMB S (R = resistant; S = sensitive). A gene mutation confirmed resistance only to streptomycin. There was agreement between the results of the phenotypic test and the clinical response to MDR-TB treatment, suggesting serious implications with regard to treatment administration based exclusively on molecular methods, and calling attention to the fact that more effective control strategies against the emergence of MDR strains must be implemented by the TB control program to prevent transmission of MDR-MTB strains at health facilities in areas highly endemic for TB.
Resumo:
Early diagnosis plays a vital role in controlling tuberculosis. The conventional methodology is slow, with results taking several weeks, in addition to having low sensitivity, especially in clinical paucibacillary samples. The objective of this study was to evaluate the use of polymerase chain reaction (PCR) on solid medium culture for a rapid diagnosis of tuberculosis, mainly in cases of negative sputum smears. Forty sputum samples were collected from inpatients with tuberculosis treated for less than 2 days. Bacilloscopy, PCR for sputum, culture on Löwestein-Jensen (LJ) solid medium, and daily PCR from culture were performed on each sample. DNA extracted from the BCG vaccine, which contains attenuated bacillus Calmette-Guérin, was used as the positive control. Smear microscopy showed 68.6% sensitivity, 80% specificity, 96% positive predictive value, and 26.7% negative predictive value, with culture on LJ medium as the gold standard. Culture at day 28 showed 74.3% sensitivity and 100% specificity. PCR of DNA extracted from sputum amplified a 1027-bp fragment of the 16s RNA gene, showing 22.9% sensitivity and 60% specificity. PCR performed with DNA extracted from daily culture showed that, from the 17th to the 40th day, the sensitivity (85.7%) and specificity (60%) were constant. We conclude that a 17-day culture is a good choice for rapid diagnosis and to interfere with the transmission chain of tuberculosis.
Resumo:
Leukotrienes are reported to be potent proinflammatory mediators that play a role in the development of several inflammatory diseases such as asthma, rheumatoid arthritis and periodontal disease. Leukotrienes have also been associated with protection against infectious diseases. However, the role of leukotrienes in Mycobacterium tuberculosis infection is not understood. To answer this question, we studied the role of leukotrienes in the protective immune response conferred by prime-boost heterologous immunization against tuberculosis. We immunized BALB/c mice (4-11/group) with subcutaneous BCG vaccine (1 x 10(5) M. bovis BCG) (prime) followed by intramuscular DNA-HSP65 vaccine (100 µg) (boost). During the 30 days following the challenge, the animals were treated by gavage daily with MK-886 (5 mg·kg-1·day-1) to inhibit leukotriene synthesis. We showed that MK-886-treated mice were more susceptible to M. tuberculosis infection by counting the number of M. tuberculosis colony-forming units in lungs. The histopathological analysis showed an impaired influx of leukocytes to the lungs of MK-886-treated mice after infection, confirming the involvement of leukotrienes in the protective immune response against experimental tuberculosis. However, prime-boost-immunized mice treated with MK-886 remained protected after challenge with M. tuberculosis, suggesting that leukotrienes are not required for the protective effect elicited by immunization. Protection against M. tuberculosis challenge achieved by prime-boost immunization in the absence of leukotrienes was accompanied by an increase in IL-17 production in the lungs of these animals, as measured by ELISA. Therefore, these data suggest that the production of IL-17 in MK-886-treated, immunized mice could contribute to the generation of a protective immune response after infection with M. tuberculosis.
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
Intestinal tuberculosis (ITB) and Crohn's disease (CD) are granulomatous disorders with similar clinical manifestations and pathological features that are often difficult to differentiate. This study evaluated the value of fluorescent quantitative polymerase chain reaction (FQ-PCR) for Mycobacterium tuberculosis (MTB) in fecal samples and biopsy specimens to differentiate ITB from CD. From June 2010 to March 2013, 86 consecutive patients (38 females and 48 males, median age 31.3 years) with provisional diagnoses of ITB and CD were recruited for the study. The patients' clinical, endoscopic, and histological features were monitored until the final definite diagnoses were made. DNA was extracted from 250 mg fecal samples and biopsy tissues from each patient. The extracted DNA was amplified using FQ-PCR for the specific MTB sequence. A total of 29 ITB cases and 36 CD cases were included in the analysis. Perianal disease and longitudinal ulcers were significantly more common in the CD patients (P<0.05), whereas night sweats, ascites, and circumferential ulcers were significantly more common in the ITB patients (P<0.05). Fecal FQ-PCR for MTB was positive in 24 (82.8%) ITB patients and 3 (8.3%) CD patients. Tissue PCR was positive for MTB in 16 (55.2%) ITB patients and 2 (5.6%) CD patients. Compared with tissue FQ-PCR, fecal FQ-PCR was more sensitive (X2=5.16, P=0.02). We conclude that FQ-PCR for MTB on fecal and tissue samples is a valuable assay for differentiating ITB from CD, and fecal FQ-PCR has greater sensitivity for ITB than tissue FQ-PCR.
Resumo:
The diagnostic usefulness of Ziehl-Neelsen (ZN)-stained sputum smears combined with conventional polymerase chain reaction (ZN/PCR) to amplify IS6110 region DNA extracted from ZN slides was evaluated. The objective was to verify if this association could improve tuberculosis (TB) diagnosis in patients at remote sites. The study was carried out in 89 patients with culture-confirmed pulmonary TB as defined by the Brazilian Manual for TB Treatment. The participants were recruited in a reference unit for TB treatment in Rondônia, a state in the Amazonian area in northern Brazil. ZN, PCR, and culture performed in the sputum samples from these patients were analyzed in different combinations (i.e., ZN plus PCR and ZN plus culture). The prevalence rates of pulmonary TB in these patients were 32.6 and 28.1% considering culture and ZN/PCR, respectively. The sensitivity and specificity of ZN/PCR were 86 and 93%, respectively. ZN/PCR was able to detect more TB cases than ZN alone. This method could offer a new approach for accurate tuberculosis diagnosis, especially in remote regions of the world where culture is not available.
Resumo:
Resistance to Mycobacterium tuberculosis is a reality worldwide, and its diagnosis continues to be difficult and time consuming. To face this challenge, the World Health Organization has recommended the use of rapid molecular tests. We evaluated the routine use (once a week) of a line probe assay (Genotype MTBDRplus) for early diagnosis of resistance and for assessment of the main related risk factors over 2 years. A total of 170 samples were tested: 15 (8.8%) were resistant, and multidrug resistance was detected in 10 (5.9%). The sensitivity profile took 3 weeks (2 weeks for culture and 1 week for rapid testing). Previous treatment for tuberculosis and the persistence of positive acid-fast smears after 4 months of supervised treatment were the major risk factors observed. The use of molecular tests enabled early diagnosis of drug-resistant bacilli and led to appropriate treatment of the disease. This information has the potential to interrupt the transmission chain of resistant M. tuberculosis.
Resumo:
Introduction: Tuberculosis is a common opportunistic infection in renal transplant patients. Objective: To obtain a clinical and laboratory description of transplant patients diagnosed with tuberculosis and their response to treatment during a period ranging from 2005 to 2013 at the Pablo Tobón Uribe Hospital. Methods: Retrospective and descriptive study. Results: In 641 renal transplants, tuberculosis was confirmed in 12 cases. Of these, 25% had a history of acute rejection, and 50% had creatinine levels greater than 1.5 mg/dl prior to infection. The disease typically presented as pulmonary (50%) and disseminated (33.3%). The first phase of treatment consisted of 3 months of HZRE (isoniazid, pyrazinamide, rifampicin and ethambutol) in 75% of the cases and HZME (isoniazid, pyrazinamide, moxifloxacin and ethambutol) in 25% of the cases. During the second phase of the treatment, 75% of the cases received isoniazid and rifampicin, and 25% of the cases received isoniazid and ethambutol. The length of treatment varied between 6 and 18 months. In 41.7% of patients, hepatotoxicity was associated with the beginning of anti-tuberculosis therapy. During a year-long follow-up, renal function remained stable, and the mortality rate was 16.7%. Conclusion: Tuberculosis in the renal transplant population studied caused diverse nonspecific symptoms. Pulmonary and disseminated tuberculosis were the most frequent forms and required prolonged treatment. Antituberculosis medications had a high toxicity and mortality. This infection must be considered when patients present with a febrile syndrome of unknown origin, especially during the first year after renal transplant.