223 resultados para spatial distribution of firms
Resumo:
The main objective of this work was to compare two methods to estimate the deposition of pesticide applied by aerial spraying. Hundred and fifty pieces of water sensitive paper were distributed over an area of 50 m length by 75 m width for sampling droplets sprayed by an aircraft calibrated to apply a spray volume of 32 L/ha. The samples were analysed by visual microscopic method using NG 2 Porton graticule and by an image analyser computer program. The results reached by visual microscopic method were the following: volume median diameter, 398±62 mum; number median diameter, 159±22 mum; droplet density, 22.5±7.0 droplets/cm² and estimated deposited volume, 22.2±9.4 L/ha. The respective ones reached with the computer program were: 402±58 mum, 161±32 mum, 21.9±7.5 droplets/cm² and 21.9±9.2 L/ha. Graphs of the spatial distribution of droplet density and deposited spray volume on the area were produced by the computer program.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.
Resumo:
The objective of this work was to evaluate the density, dynamics and vertical distribution of a Hrabeiella periglandulata population in a forest soil at Brno, Czech Republic. From December 2003 to November 2004, two plots covered by mixed stands and two covered by coniferous stands were sampled monthly. Six soil cores per plot were taken down to 15 cm and subdivided into layers, which were subjected to wet funnel extraction. Missing in one of the coniferous stands H. periglandulata was abundant in the mixed stand with the highest soil pH. In this stand, monthly sampling continued until November 2005, with three additional samplings up to January 2007. Mean annual density was 2,672±1,534 individuals m-2. Population dynamics differed from those reported from Germany. Highest densities were reached in early summer, lowest between August and December. Due to aggregated horizontal distribution, differences between monthly values were often nonsignificant. No significant correlation with climatic data was found. Nevertheless, the observed dynamics corresponded to the climatic conditions, showing particularly the negative effect of drought. The population was evenly distributed in the sampled soil profile, only avoiding the organic layer. Except for a locality in Poland, this is the easternmost record of the species.
Resumo:
An experiment was carried out to determine the root distribution of four grapevine rootstocks (Salt Creek, Dogridge, Courdec 1613, IAC 572) in a coarse texture soil of a commercial growing area in Petrolina County, São Francisco Valley, Brazil. Rootstocks were grafted to a seedless table grape cv. Festival, and irrigated by microsprinkler. Roots were quantified by the trench wall method aided by digital image analysis. Results indicated that roots reached 1 m depth, but few differences among rootstocks were found. All of them presented at least 90 % of the roots distributed until 0.6 m depth, with a greater root presence in the first 0.4 m. The upper 0.6 m can be taken into account as the effective rooting depth for soil and water management.
Resumo:
In this work we propose a new approach for the determination of the mobility of mercury in sediments based on spatial distribution of concentrations. We chose the Tainheiros Cove, located in the Todos os Santos Bay, Brazil, as the study area, for it has a history of mercury contamination due to a chloro-alkali plant that was active during 12 years. Twenty-six surface sediment samples were collected from the area and mercury concentrations were measured by cold vapour atomic absorption spectrophotometry. A contour map was constructed from the results, indicating that mercury accumulated in a "hot spot" where concentrations reach more than 1 µg g-1. The model is able to estimate mobility of mercury in the sediments based on the distances between iso-concentration contours that determines an attenuation of concentrations factor. Values of attenuation ranged between 0.0729 (East of the hot spot, indicating higher mobility) to 0.7727 (North of the hot spot, indicating lower mobility).
Resumo:
A Berner impactor was used to collect size-differentiated aerosol samples from March to August 2003 in the city of Aveiro, on the Portuguese west coast. The samples were analysed for the main water-soluble ion species. The average concentration of sulphate, nitrate, chloride and ammonium was 6.38, 3.09, 1.67 and 1.27 µg m-3, respectively. The results show that SO4(2-) and NH4+ were consistently present in the fine fraction < 1 µm, which represents, on average, 72 and 89% of their total atmospheric concentrations, respectively. The NO3-particles were concentrated in the coarse size. Chloride presented the characteristic coarse mode for marine aerosols. During some spring/summer events, an ammonium surplus was observed (NH4+/SO4(2-) molar ratios > 2), possibly due to greater availability of ammonia coming from agricultural activities or from the neighbouring chemical industrial complex. During the remaining periods, the aerosol was found to be somewhat acidic and predominantly in the form of ammonium bisulphate (NH4+/SO4(2-) molar ratios = 0.5-1.25). Samples collected under a major or exclusive influence of maritime air masses were essentially constituted by coarse particles with enrichment in sea salt, while for air masses of continental origin the contribution of water-soluble ionic species in the fine mode was more pronounced.
Resumo:
Distribution and stocks of soil organic matter (SOM) compartments after Pinus monoculture introduction in a native pasture area of a Cambisol, Santa Catarina, Brazil, were investigated. Pinus introduction increased soil acidity, content of exchangeable Al+3 and diminished soil nutrients. Nevertheless, soil C stock increased in all humic fractions of the 0-5 cm layer after Pinus afforestation. In the subsurface, the vegetation change only promoted SOM redistribution from the NaOH-extractable humic substances to a less hydrophobic humin fraction. Under Pinus, soil organo-mineral interactions were relevant up to a 15 cm depth, while in pasture environment, this mechanism occurred mainly in the surface layer.
Resumo:
The objective of this study was to test the hypothesis that the distribution of tree species in a fragment of submontane seasonal semideciduous forest, a buffer zone in the Parque Estadual do Rio Doce, Minas Gerais, is influenced by geomorphological and weather and soil variables, therefore it can represent a source of information for the restoration of degraded areas where environmental conditions are similar to those of the study area. A detailed soil survey was conducted in the area by sampling three soil profiles per slope segment, totaling 12 profiles. To sample the topsoil, four composite samples were collected from the 10-20 cm layers in each topographic range totaling 16 composite samples. In the low ramp and the lower and upper concave slopes, the texture ranged from clay to sandy-clay. The soil and topographic gradient was characterized by changes in the soil physical-chemical properties. The soil in the 10-20 cm sampled layer was sandier, slightly more fertile and less acid in the low ramp than the clayer soil, nutrient-poor and highly acid soil at the top. The soil conditions in the lower and upper slope of the sampled layers, in turn, were intermediate. The P levels were limiting in all soils. The species distribution along the topographic gradient was associated with variations in chemical fertility, acidity and soil texture. The distribution of Pera leandri, Astronium fraxinifolium, Pouteria torta, Machaerium brasiliense and Myrcia rufipes was correlated with high aluminum levels and to low soil fertility and these species may be indicated for restoration of degraded areas on hillsides and hilltops in regions where environmental conditions are similar. The distribution of Pouteria venosa, Apuleia leiocarpa and Acacia polyphylla was correlated with the less acid and more fertile soil in the environment of the low ramps, indicating the potential for the restoration of similar areas.
Resumo:
Despite considerable efforts to develop accurate electronic sensors to measure leaf wetness duration (LWD), little attention has been given to studies about how is LWD variability in different positions of the crop canopy. In order to evaluate the influence of 'Niagara Rosada' (Vitis labrusca) grapevine structure on the spatial variability of LWD, the objective of this study was to determine the canopy position of the ÂNiagara Rosada table grape with longer LWD and its correlation with measured standard LWD over turfgrass. LWD was measured in four different canopy positions of the vineyard (sensors deployed at 45º with the horizontal): at the top of the plants, with sensors facing southwest and northeast (Top-SW and Top-NE), and at the grape bunches height, with sensors facing southwest and northeast (Bottom-SW and Bottom-NE). No significant difference was observed between the top (1.6 m) and the bottom (1.0 m) of the canopy and also between the southwest and northeast face of the plants. The relationship between standard LWD over turfgrass and crop LWD in different positions of the grape canopy showed a define correlation, with R² ranging from 0.86 to 0.89 for all period, from 0.72 to 0.77 for days without rain, and from 0.89 to 0.91 for days with rain.
Resumo:
The technique of precision agriculture and soil-landscape allows delimiting areas for localized management, allowing a localized application of agricultural inputs and thereby may contribute to preservation of natural resources. Therefore, the objective of this work was to characterize the spatial variability of chemical properties and clay content in the context of soil-landscape relationship in a Latosol (Oxisol) under cultivation of citrus. Soil samples were collected at a depth of 0.0-0.2 m in an area of 83.5 ha planted with citrus, as a 50-m intervals grid, with 129 points in concave terrain and 206 points in flat terrain, totaling 335 points. Values for the variables that express the chemical characteristics and clay content of soil properties were analyzed with descriptive statistics and geostatistical modeling of semivariograms for making maps of kriging. The values of range and kriging maps indicated higher variability in the shape of concave topography (top segment) compared with the shape of flat topography (slope and hillside segments below). The identification of different forms of terrain proved to be efficient in understanding the spatial variability of chemical properties and clay content of soil under cultivation of citrus.
Resumo:
The characterization of the spatial variability of soil attributes is essential to support agricultural practices in a sustainable manner. The use of geostatistics to characterize spatial variability of these attributes, such as soil resistance to penetration (RP) and gravimetric soil moisture (GM) is now usual practice in precision agriculture. The result of geostatistical analysis is dependent on the sample density and other factors according to the georeferencing methodology used. Thus, this study aimed to compare two methods of georeferencing to characterize the spatial variability of RP and GM as well as the spatial correlation of these variables. Sampling grid of 60 points spaced 20 m was used. For RP measurements, an electronic penetrometer was used and to determine the GM, a Dutch auger (0.0-0.1 m depth) was used. The samples were georeferenced using a GPS navigation receiver, Simple Point Positioning (SPP) with navigation GPS receiver, and Semi-Kinematic Relative Positioning (SKRP) with an L1 geodetic GPS receiver. The results indicated that the georeferencing conducted by PPS did not affect the characterization of spatial variability of RP or GM, neither the spatial structure relationship of these attributes.
Resumo:
The aim of this study was to characterize the spatial variability of soil bulk density (Bd), soil moisture content (θ) and total porosity (Tp) in two management systems of sugarcane harvesting, with or without burning, in a Haplustox soil, in the 0-0.20 m layer. The study area is located in Rio Brilhante, state of Mato Grosso do Sul, Brazil, in Eldorado Sugar Mill. The plots have presented 180 m length, and 145.6 m width, totaling 90 points distributed in the form of a grid of nine rows by ten columns, with points spaced 20 m from its neighbor. Soil samples were collected at 0-0.20 m layer in 2007/2008 and 2008/2009 crops. The harvest with burning system had a higher density compared to mechanized harvest, in the two study periods. The moisture content as well as the porosity increased proportionally with the decrease of the density of the harvest burning system compared to the mechanized.
Resumo:
Information about rainfall erosivity is important during soil and water conservation planning. Thus, the spatial variability of rainfall erosivity of the state Mato Grosso do Sul was analyzed using ordinary kriging interpolation. For this, three pluviograph stations were used to obtain the regression equations between the erosivity index and the rainfall coefficient EI30. The equations obtained were applied to 109 pluviometric stations, resulting in EI30 values. These values were analyzed from geostatistical technique, which can be divided into: descriptive statistics, adjust to semivariogram, cross-validation process and implementation of ordinary kriging to generate the erosivity map.Highest erosivity values were found in central and northeast regions of the State, while the lowest values were observed in the southern region. In addition, high annual precipitation values not necessarily produce higher erosivity values.
Resumo:
The knowledge of the spatial variability of noise levels and the build of kriging maps can help the evaluation of the salubrity of environments occupied by agricultural workers. Therefore, the objective of this research was to characterize the spatial variability of the noise level generated by four agricultural machines, using geostatistics, and to verify if the values are within the limits of human comfort. The evaluated machines were: harvester, chainsaw, brushcutter and tractor. The data were collected at the height of the operator's ear and at different distances. Through the results, it was possible to verify that the use of geostatistics, by kriging technique, made it possible to define areas with different levels for the data collected. With exception of the harvester, all of machines presented noise levels above than 85 dB (A) near to the operator, demanding the use of hearing protection.
Resumo:
In the last few years, precision agriculture has become commonly used with many crops, particularly cereals, and there is also interest in precision horticulture. Pear is a seasonal fruit and well appreciated by Brazilian people, although it is mostly imported. Brazilian farmers are nowadays trying to increase pear production. Thus, this research aimed at mapping the yield of pear trees in order to study the spatial variability of yield as well as its comparison with spatial variability of soil and plant attributes. The experimental field had 146 pear trees, variety 'Pêra d'água', distributed on a 1.24 ha. Four harvests were performed according to the fruit ripening and from each tree; only the ripe fruits were harvested. In each harvest, all the fruits were weighed and the total yield was obtained based on the sum of each harvest. The soil attributes analyzed were P, K, Ca, Mg, pH in CaCl2, C, Cu, Zn, Fe, Mn and base saturation, and the plant attributes were fruit length, diameter and yield. Yield had low correlation with soil and plant attributes. An index of spatial variability was suggested in this study and helped in classifying levels of spatial dependence of the various soil and plant attributes: very low (fruit length); low (P, fruit diameter), medium (Mg, pH, Cu, Zn, Fe), high (Ca, K, base saturation and yield), and very high (Mn and C).