201 resultados para soil moisture content
Resumo:
Coffee seeds have slow and irregular germination, losing fast their viability during storage, and the standard germination test of these seeds requires at least 30 days. Besides, the results may not reflect the actual physiological quality of these seeds. The objective of this work was to develop a fast and practical test for evaluating the viability of coffee seeds, which is based on the interpretation of different color hues of exudates from seeds. Coffee seeds of the cultivar Catuai 44 from six lots were submitted to germination, accelerated aging, and electrical conductivity tests. In the exudates color hue test, coffee seeds without the parchment and the silvery pellicle (four replications of 10 seeds each) were distributed on top of paper towels moistened and then maintained into a germinator, at 25 ºC for 24, 48, 72, 96, and 120 h. Three classes of color hues were established: colorless, light color hue, and dark color hue, assigning the values of 0, 1, and 3, for each class, respectively. The proposed exudates color hue test can be recommended for the fast assessment of viability for coffee seeds. The most promising results were obtained for seeds with 12% moisture content, after imbibition periods of 72, 96, and 120 h; and with 30% moisture content, after imbibition periods of 72 and 120 h.
Resumo:
The Leguminosae family is one of the most representative botanical families of the Caatinga, with 80 endemic species, highlighting the catingueira (Poincianella pyramidalis). The objective of this research work was to study the maturation process of P. pyramidalis seeds based on the physiological maturity. Five harvest of fruits and seeds were carried out, with 15 days interval each, in a period from July to September 2010. The harvests began 75 days after anthesis (d.a.a.) and lasted until 135 d.a.a. Fruits and seeds were subjected to the following assessments: size, moisture content, and dry mass of fruits and seeds; and germination and vigor of seeds (first count of germination, germination speed index, length and dry mass of seedling). Under the environmental conditions of municipality of Soledade, State of Paraiba, Northeast Brazil, the point of physiological maturity of P. pyramidalis seeds occurs at 125 d.a.a., when the maximum accumulation of dry mass is 1.993 g and moisture content is 21%. The ideal point of harvest is between 130 d.a.a and 135 d.a.a., before natural dehiscence, when the moisture content of seeds is between 13.0% and 5.0%.
Resumo:
This study was aimed at evaluating the desiccation sensitivity in seeds of the tree Tapirira obtusa (Benth.) J. D. Mitchell collected from three different environments and subjected to two distinct drying speeds. Seeds were collected from a rocky area, in the "Cerrado", and in a riparian forest area, in the region of municipality of Lavras, State of Minas Gerais. The seeds were subjected to drying with magnesium chloride (slow drying) or silica gel (fast drying), into closed environment, until moisture contents of 40%, 30%, 20% and 10%, considering as control, the percentage of germination at the initial moisture content in each environment, which varied from 47% to 50%. Percentages of germination and normal seedlings as well as germination speed index were assessed. For the three environments studied, there was no effect of slow drying on seed germination. Seeds from area of Cerrado, however, have shown a slight reduction on germination when subjected to fast drying. Oppositely, seeds from rocky area had germination increased when subjected to fast drying. Seeds from riparian forest area had no reduction on germination percentage, independent of drying speed. Results suggest that seeds of T. obtusa are not sensitive to desiccation.
Resumo:
The effect of mixture of seeds of Brachiaria brizantha, cv. Marandu, with different sources, granulometry, and phosphatic fertilizer doses during various periods of exposure on the physiological potential of the seeds has been assessed. The treatments consisted in seed exposure during periods of 0, 3, 6, 12, 24, 36, 48, 72, 96, and 120 h to the following fertilizers: ground granulated single superphosphate (SS), and powdered (SSp); and ground granulated ammonium monophosphate (AMP), at doses of 40 and 80 kg P2O5 ha-1. Tests of germination, tetrazolium, moisture content, and vigor (first count, electrical conductivity, emergence, emergence speed, and fresh mass of seedlings) were performed. It has been concluded that seed physiological potential of B. brizantha cv. Marandu is reduced with increase on the exposure period to phosphatic fertilizer. Such effect, however, is dependent on the product source, granulometry, and dose. SSp was the most harmful to seeds, followed by SSp and AMP, respectively. Moreover, considering a 60% germination rate as acceptable, it may be inferred that seeds can be kept in contact with AMP and SSp, in dose of 80 kg of P2O5 ha-1, respectively, for periods of 71.2 and 16.2 hours.
Resumo:
Tabebuia caraiba (Mart.) Bureau, commonly known as Silver Trumpet Tree is a forestal species, belonging to Bignoniaceae family, which can be utilized as medicinal plant or in landscaping of urban and rural areas; besides producing large mechanical resistance wood. Despite its wide use and ecological importance, basic studies on storages of their seeds are scarce. This way, the objective of this study was to determine the most adequate packaging and the best temperatures, for storing seeds of T. caraiba. For this, seeds were stored in two types of packaging: Kraft paper bags and transparent polyethylene bags; which were then stored during 150 days under three different environments: laboratory normal environment (25±2 °C); cold chamber (8±2 °C); and refrigerator (6±2 °C). After periods of 0, 30, 60, 90, 120, and 150 days, seed moisture content, percentage of emergence, emergence speed index, and seedling length were evaluated. Seeds of T. caraiba kept in packaging of paper and polyethylene bags and stored at laboratory environmental condition, have lost more quickly their vigor along the storage period. For storage, it is recommended the maintenance of T. caraiba seeds in polyethylene bags into cold chamber; and/or polyethylene bags or Kraft paper bags into refrigerator.
Resumo:
Nowadays, image analysis is one of the most modern tools in evaluating physiological potential of seeds. This study aimed at verifying the efficiency of the seedling imaging analysis to assess physiological potential of wheat seeds. The seeds of wheat, cultivars IAC 370 and IAC 380, each of which represented by five different lots, were stored during four months under natural environmental conditions of temperature (T) and relative humidity (RH), in municipality of Piracicaba, Stated of São Paulo, Brazil. For this, bimonthly assessments were performed to quantify moisture content and physiological potential of seeds by means of tests of: germination, first count, accelerated aging, electrical conductivity, seedling emergence, and computerized analysis of seedlings, using the Seed Vigor Imaging System (SVIS®). It has been concluded that the computerized analyses of seedling through growth indexes and vigor, using the SVIS®, is efficient to assess physiological potential of wheat seeds.