427 resultados para propriedades térmicas efetivas
Resumo:
Certain biopolymers are capable of forming physically cross-linked gels in aqueous medium, stabilized by forces such as Coulombic, charge transfer, hydrogen bonding, dipole-dipole, van der Waals, and hydrophobic interactions. The mathematical description of these physical networks are difficult, but should contribute to a better understanding of the gelling process. The Clark and Ross-Murphy model was applied to experimental data for agarose-guar gum mixed systems, in which only agarose is the gelling polysaccharide. A computational routine based on the statistical maximum likehood principle was employed to estimate the f, K and a characteristic parameters. Statistical t-test and F-test were used to analyse the set of parameters.
Resumo:
Results of high level ab initio calculations of the intermolecular potentials and theoretical dispersion coefficients for the Ne2 and Ar2 dimers were utilized to build analytical potentials for these species. The obtained potentials were used in the calculation of the dimers rovibrationals levels, and their respective spectroscopic constants determined. A comparison of high level experimental data with our theoretical results shows a very good agreement for Ne2, and also a good agreement for the Ar2 dimer.
Resumo:
The layered double hydroxides, known as anionic clays and represented by the general formula [M2+1-x M3+x (OH) 2]x+ Am-x/m·nH 2O, are a group of materials which are of much interest currently. They present a variety of potential applications as adsorbents, catalysts and catalyst support, ion-exchangers, antacids and as a polymer stabilizer. It is possible to obtain a broad variety of layered double hydroxides (LDHs), depending on the identity and ratio of the cations M2+ and M3+, as well as the interlamelar anion. The aim of this review is to give out some information about this class of materials, concerning to the synthesis, characterization, properties and applications.
Resumo:
The sols for thin electrochromic coatings of Nb2O5 were obtained by synthesis of the niobium butoxide from BuONa and NbCl5. The ~300nm thick films were deposited by dip-coating technique from the alkoxide solution and calcined at 560ºC in O2 atmosphere during 3 hours. The particles size of niobium oxide (V) powder (~20mm) was obtained from x-ray diffraction using the Scherrer equation. The coatings were characterized by cyclic voltammetry and cronoamperommetry techniques. The spectral variation of the optical transmittance were determined in situ as a function of the cyclical potencial and memory effect. The insertion process of lithium is reversible and change the film color from transparent (T=80%) to dark blue (T=20%).
Resumo:
Metabolic rates were determined by dissolved oxigen changes in light and dark bottles, filled with river water and after input of mixed effluent concentrations. In another experiment, dissolved inorganic nutrients, chlorophyll-alpha and other physico-chemical parameters were analyzed. Water column showed higher decomposition than production rates. Waste inputs increased primary production rates, but in higher concentrations forced the system to heterotrophy. The natural richness of macrophytes and macroalgae could be limiting the phytoplanktonic production by phosphorus assimilation. Observation of the nitrogenated inorganic nutrients suggest that the natural pelagic system is directed to nitrification. Mixed waste input inverted this trend, toward denitrification.
Resumo:
Chromium and copper-doped hematites were prepared with the aim of studying the synergistic effect of these dopants on the textural and on the catalytic properties of the iron oxides towards the high temperature shift reaction. It was found that the most active catalysts were those with the highest amount of copper. They had the Fe(II)/Fe(III) ratio near the stoichiometric value of magnetite, the highest surface areas under the reactional atmosphere and the greatest tendency to produce the active form; they also were poorly crystalline solids. The best performance was shown by the catalyst with Fe/Cu=10, heated at 300ºC. It can thus be concluded that copper acts both as textural and structural promoter in these catalysts.
Resumo:
In this work we describe the synthesis and characterization of chalcogenide glass (0.3La2S3-0.7Ga2S 3) with low phonons frequencies. Several properties were measured like Sellmeier parameters, linear refractive index dispersion and material dispersion. Samples with the composition above were doped with Dy2S3. The absorption and emission characteristics were measured by electronic spectroscopy and fluorescence spectrum respectively. Raman and infrared spectroscopy shows that these glasses present low phonons frequencies and strucuture composed by GaS4 tetrahedrals. The Lines model was used for calculate the coefficients values of the non linear refractive index.
Propriedades fotofísicas de Eu3+ e Tb3+ imobilizados em sílica gel funcionalizada com beta-Dicetonas
Resumo:
Synthetic procedures, characterization and luminescent properties of Eu3+ and Tb3+ ions supported on silica gel functionalized with beta-diketones are presented. The functionalization with propyl benzoyltrifluoroacetone (BPG), dibenzoylmethane (DBM) and hexafluoroacetone (HPG), leads to new luminescent materials which photophysical properties depend on the group substituent in the beta-diketone. These systems were evaluated in terms of luminescence and lifetime of the Eu3+ and Tb3+ ions. Silica functionalization was confirmed by TGA and Elemental Analysis. The sample contents of ions were from 0,2 to 0,3 % (w/w).
Resumo:
Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.
Resumo:
A review with 94 references focusing on mu3-oxo-triruthenium carboxylate clusters is presented. The electronic, magnetic, electrochemical, and catalytic properties of these compounds are discussed. Main synthetic routes and structural characteristics, including their use as building blocks in supramolecular systems are described.
Resumo:
The self-assembly technique is a powerful tool to fabricate ultrathin films from organic compounds aiming at technological applications in molecular electronics. This relatively new approach allows molecularly flat films to be obtained on a simple and cheap fashion from various types of material, including polyelectrolytes, conducting polymers, dyes and proteins. The resulting multilayer films may be fabricated according to specific requirements since their structural and physical properties may be controlled at the molecular level. In this review we shall comment upon the evolution of preparation methods for ultrathin films, the process of adsorption and their main properties, as well as some examples of technological applications of layer-by-layer or self-assembled films.
Resumo:
Ionic liquids, in specially those based on the 1,3-dialkylimidazolium cation, have been receiving special attention in differents areas due to their interesting physical-chemical properties. In this work, some aspects of their structure (in both solid and liquid state) and its relationships with their properties are reviewed.
Resumo:
This paper supplies a compact revision on the herbicide glyphosate physic-chemistry characteristic mains, including toxicity and valid Brazilian legislation for its use.
Resumo:
Chemically synthesized surfactants are widely used for many purposes in almost every sector of modern industry. Surface-active compounds of biological origin (biosurfactants) have been gaining attention in recent years because of some advantages such as biodegradability, low toxicity, diversity of applications and functionality under extreme conditions. Microbial biosurfactants are useful in bioremediation of water and soil, enhanced oil recovery, and in many formulations of petrochemical, chemical, pharmaceutical, food, cosmetic and textile industries. The importance of biosurfactants, their characteristics and industrial applications are discussed.
Resumo:
Nickel nanoparticles supported on amorphous silica ceramic matrix were synthesized by the polymeric precursor method. The nanostructure was characterized by NMR, BET, XRD, SEM, TEM, and flame atomic absorption spectrometry techniques. It was observed a dependence of the crystallite size on the thermal annealing, under a N2 atmosphere. The materials presented a high catalytic activity and selectivity upon the beta-pinene hydrogenation reaction. The magnetic hystereses were also correlated with the morphology of the processed material.