208 resultados para S.aureus
Resumo:
The antimicrobial activity of copaiba oils was tested against Gram-positive and Gram-negative bacteria, yeast, and dermatophytes. Oils obtained from Copaifera martii, Copaifera officinalis, and Copaifera reticulata (collected in the state of Acre) were active against Gram-positive species (Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus faecalis) with minimum inhibitory concentrations ranging from 31.3-62.5 µg/ml. The oils showed bactericidal activity, decreasing the viability of these Gram-positive bacteria within 3 h. Moderate activity was observed against dermatophyte fungi (Trichophyton rubrum and Microsporum canis). The oils showed no activity against Gram-negative bacteria and yeast. Scannning electron microscopy of S. aureus treated with resin oil from C. martii revealed lysis of the bacteria, causing cellular agglomerates. Transmission electron microscopy revealed disruption and damage to the cell wall, resulting in the release of cytoplasmic compounds, alterations in morphology, and a decrease in cell volume, indicating that copaiba oil may affect the cell wall.
Resumo:
In the present study, an extensive in vitro antimicrobial profiling was performed for three medicinal plants grown in Cuba, namely Simarouba glauca, Melaleuca leucadendron and Artemisia absinthium. Ethanol extracts were tested for their antiprotozoal potential against Trypanosoma b. brucei, Trypanosoma cruzi, Leishmania infantum and Plasmodium falciparum. Antifungal activities were evaluated against Microsporum canis and Candida albicans whereas Escherichia coli and Staphylococcus aureus were used as test organisms for antibacterial activity. Cytotoxicity was assessed against human MRC-5 cells. Only M. leucadendron extract showed selective activity against microorganisms tested. Although S. glauca exhibited strong activity against all protozoa, it must be considered non-specific. The value of integrated evaluation of extracts with particular reference to selectivity is discussed.
Resumo:
Seven medicinal plant extracts traditionally used in Kenya, mainly for management of infectious conditions, were chosen and screened for their antibacterial activity against Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Bacillus cereus and Staphylococcus aureus) bacteria. Antibacterial activity was tested using the broth dilution method. Harrisonia abyssinica and Terminalia kilimandscharica extracts showed significant activity against Gram+ and Gram- bacteria. The methanolic extracts of T. kilimandscharica bark and H. abyssinica bark and leaves showed minimum inhibitory activity against all tested bacteria, with minimal inhibitory concentrations ranging from 25-150 mg/mL. Ajuga remota and Amaranthus hybridus, which are lethal to brine shrimp nauplii, showed significantly lower antibacterial activity than those that were relatively non-toxic.
Resumo:
Himatanthus articulatus (Vahl) Woodson is a tree found in the northern Amazon savannahs (common name: sucuba) that is used in local Amerindian medicine. Leaf, bark and branch wood methanol extracts, sequentially obtained hexane, ethyl acetate and methanol extracts and latex were evaluated for antifungal and antibacterial activities against American Type Culture Collection (ATCC) and local clinical strains using the disc diffusion method. Methanol extracts and latex inhibited Candida albicans, leaf methanol extracts inhibited Staphylococcus aureus and Bacillus subtilis and bark methanol extracts inhibited B. subtilis. Active extracts inhibited the ATCC and clinical strains. Polar antifungal and antibacterial principles in latex and extracts are thought to be responsible for the inhibition.
Resumo:
Propolis is a resinous mixture of different plant exudates collected by honeybees. Currently, propolis is widely used as a food supplement and in folk medicine. We have evaluated 20 Cuban propolis extracts of different chemical types, brown (BCP), red and yellow (YCP), with respect to their in vitro antibacterial, antifungal and antiprotozoal properties. The extracts inhibited the growth of Staphylococcus aureus and Trichophyton rubrum at low µg/mL concentrations, whereas they were not active against Escherichia coli and Candida albicans. The major activity of the extracts was found against the protozoa Leishmania, Trypanosoma and Plasmodium, although cytotoxicity against MRC-5 cells was also observed. The BCP-3, YCP-39 and YCP-60 extracts showed the highest activity against P. falciparum, with 50% of microbial growth (IC50) values of 0.2 µg/mL. A positive correlation between the biological activity and the chemical composition was observed for YCP extracts. The most promising antimicrobial activity corresponds to YCP subtype B, which contains acetyl triterpenes as the main constituents. The present in vitro study highlights the potential of propolis against protozoa, but further research is needed to increase selectivity towards the parasite. The observed chemical composition-activity relationship of propolis can contribute to the identification of the active principles and standardisation of this bee product.
Resumo:
Methicillin-resistant Staphylococcus remains a severe public health problem worldwide. This research was intended to identify the presence of methicillin-resistant coagulase-negative staphylococci clones and their staphylococcal cassette chromosome mec (SCCmec)-type isolate from patients with haematologic diseases presenting bacterial infections who were treated at the Blood Bank of the state of Amazonas in Brazil. Phenotypic and genotypic tests, such as SCCmec types and multilocus sequence typing (MLST), were developed to detect and characterise methicillin-resistant isolates. A total of 26 Gram-positive bacteria were isolated, such as: Staphylococcus epidermidis (8/27), Staphylococcus intermedius (4/27) and Staphylococcus aureus (4/27). Ten methicillin-resistant staphylococcal isolates were identified. MLST revealed three different sequence types: S. aureus ST243, S. epidermidis ST2 and a new clone of S. epidermidis, ST365. These findings reinforce the potential of dissemination presented by multi-resistant Staphylococcus and they suggest the introduction of monitoring actions to reduce the spread of pathogenic clonal lineages of S. aureus and S. epidermidis to avoid hospital infections and mortality risks.
Resumo:
Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs) of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively). In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.
Resumo:
Aiming to identify new sources of bioactive secondary metabolites, we isolated 82 endophytic fungi from stems and barks of the native Brazilian tree Caesalpinia echinata Lam. (Fabaceae). We tested their ethyl acetate extracts in several in vitro assays. The organic extracts from three isolates showed antibacterial activity against Staphylococcus aureus and Escherichia coli [minimal inhibitory concentration (MIC) 32-64 μg/mL]. One isolate inhibited the growth of Salmonella typhimurium (MIC 64 μg/mL) and two isolates inhibited the growth of Klebsiella oxytoca (MIC 64 μg/mL), Candida albicans and Candida tropicalis (MIC 64-128 μg/mL). Fourteen extracts at a concentration of 20 μg/mL showed antitumour activities against human breast cancer and human renal cancer cells, while two isolates showed anti-tumour activities against human melanoma cancer cells. Six extracts were able to reduce the proliferation of human peripheral blood mononuclear cells, indicating some degree of selective toxicity. Four isolates were able to inhibit Leishmania (Leishmania) amazonensis and one isolate inhibited Trypanosoma cruzi by at least 40% at 20 μg/mL. The trypanocidal extract obtained from Fusarium sp. [KF611679] culture was subjected to bioguided fractionation, which revealed beauvericin as the compound responsible for the observed toxicity of Fusarium sp. to T. cruzi. This depsipeptide showed a half maximal inhibitory concentration of 1.9 μg/mL (2.43 μM) in a T. cruzi cellular culture assay.
Resumo:
In our previous study, we have found that 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]-pyrimidin-4-ylamine (BAY 41-2272), a guanylate cyclase agonist, activates human monocytes and the THP-1 cell line to produce the superoxide anion, increasing in vitro microbicidal activity, suggesting that this drug can be used to modulate immune functioning in primary immunodeficiency patients. In the present work, we investigated the potential of the in vivo administration of BAY 41-2272 for the treatment of Candida albicans and Staphylococcus aureus infections introduced via intraperitoneal and subcutaneous inoculation. We found that intraperitoneal treatment with BAY 41-2272 markedly increased macrophage-dependent cell influx to the peritoneum in addition to macrophage functions, such as spreading, zymosan particle phagocytosis and nitric oxide and phorbol myristate acetate-stimulated hydrogen peroxide production. Treatment with BAY 41-2272 was highly effective in reducing the death rate due to intraperitoneal inoculation of C. albicans, but not S. aureus. However, we found that in vitro stimulation of peritoneal macrophages with BAY 41-2272 markedly increased microbicidal activities against both pathogens. Our results show that the prevention of death by the treatment of C. albicans-infected mice with BAY 41-2272 might occur primarily by the modulation of the host immune response through macrophage activation.
Resumo:
Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, can be regarded as potential reservoirs of resistance genes for pathogenic strains, e.g., Staphylococcus aureus. The aim of this study was to assess the prevalence of different resistance phenotypes to macrolide, lincosamide, and streptogramins B (MLSB) antibiotics among erythromycin-resistant S. epidermidis, together with the evaluation of genes promoting the following different types of MLSB resistance:ermA, ermB, ermC,msrA, mphC, and linA/A’. Susceptibility to spiramycin was also examined. Among 75 erythromycin-resistantS. epidermidis isolates, the most frequent phenotypes were macrolides and streptogramins B (MSB) and constitutive MLSB (cMLSB). Moreover, all strains with the cMLSB phenotype and the majority of inducible MLSB (iMLSB) isolates were resistant to spiramycin, whereas strains with the MSB phenotype were sensitive to this antibiotic. The D-shape zone of inhibition around the clindamycin disc near the spiramycin disc was found for some spiramycin-resistant strains with the iMLSB phenotype, suggesting an induction of resistance to clindamycin by this 16-membered macrolide. The most frequently isolated gene was ermC, irrespective of the MLSB resistance phenotype, whereas the most often noted gene combination wasermC, mphC, linA/A’. The results obtained showed that the genes responsible for different mechanisms of MLSB resistance in S. epidermidis generally coexist, often without the phenotypic expression of each of them.
Resumo:
A atividade antimicrobiana das Pastilhas de Paraformaldeído, reproduzindo as condições de uso das Instituições de Saúde do Brasil (sem o aquecimento, sem o acréscimo da umidade relativa, a 5%, por um período longo de exposição de 12 horas), foi avaliada "in vitro" por meio do monitoramento microbiológico, segundo a metodologia da AOAC, adotada oficialmente pelo Ministério da Saúde do Brasil para o registro dessa categoria de produtos. Os resultados dos experimentos refutaram a ação esterilizante das Pastilhas de Paraformaldeído nestas condições. Diante destes resultados, realizou-se, então, os testes para avaliação desinfetante do produto utilizando-se o Método de Diluição de Uso, preconizada pela AOAC, adaptado para produtos gasosos, contra os microrganismos teste padronizados Staphylococcus aureus (ATCC nº. 6538), Samonella choleraesuis (ATCC nº. 10708) e Pseudomonas aeruginosa (ATCC nº. 15442). Nestes experimentos, os resultados das culturas mostraram-se 100% negativos contra todas as bactérias testadas inferindo-se indícios de atividade desinfetante de alto nível.
Resumo:
O principal objetivo deste estudo é identificar, na literatura, artigos sobre a ocorrência de contaminação das superfícies inanimadas e uma possível disseminação de bactérias resistentes no ambiente hospitalar. Realizou-se um levantamento bibliográfico de artigos publicados nas bases de dados LILACS, MEDLINE, Science Direct, SCOPUS e ISI Web of Knowledge, entre 2000 e 2008. Foram selecionados e analisados vinte e um artigos. Nos estudos analisados, realçou-se a presença de bactérias em monitores, grades de cama, mesas, torneiras, telefones, teclados de computador e outros objetos. Houve predominância de Staphylococcus aureus resistente à meticilina, Clostridium difficile, Acine-to-bacter baumannii e Enterococcus resistentes à vancomicina, sendo fator preditivo a ocupação prévia por pacientes colonizados por tais microrganismos. Verificou-se semelhança entre as cepas isoladas de pacientes colonizados e/ou infectados e as cepas do ambiente por tipificação molecular. Essas evidências reforçam a necessidade de conhecimento e controle de fontes de patógenos no ambiente hospitalar.
Resumo:
Objetivou-se descrever e comparar as características clínicas, laboratoriais e assistenciais de RN que apresentaram sepse comprovada tardia e de RN que apresentaram sepse não comprovada tardia. Em seguida, avaliar se houve diferença entre os grupos, além de descrever os germes prevalentes na unidade neonatal estudada. Estudo descritivo, envolvendo 168 casos. Observou-se que 33,3% tiveram sepse tardia provada. A idade no momento da sepse, o tempo total de internação, a quantidade total de neutrófilos, a quantidade de neutrófilos imaturos e o valor da PC-r mostraram bons parâmetros na diferenciação entre os dois grupos quando analisados de forma isolada. A Klebisiella pneumoniae, o Staphylococcus coagulase negativo e o S. aureus foram as bactérias mais comumente isoladas.