201 resultados para Oral immunotherapy
Resumo:
As a T cell-dependent phenomenon, oral tolerance is not expected to depend necessarily on native configuration of antigens. We investigated the induction of oral tolerance with modified ovalbumin (Ova). Oral administration of heat-denatured (HD-Ova) and cyanogen bromide-degraded ovalbumin was less effective than native Ova in inducing oral tolerance in B6D2F1 mice. HD-Ova was effective in suppressing delayed-type hypersensitivity (DTH) reactions but did not suppress specific antibody formation. Injection of Ova directly into the stomach, but not into the ileum or cecum, suppressed subsequent immunization to DTH reactions. Gavage with protease inhibitors (aprotinin or ovomucoid) before gavage with Ova was ineffective in blocking tolerance induction. Treatment with hydroxyurea to destroy cycling cells 24 h before gavage with Ova blocked oral tolerance induction and also the possibility to passively transfer tolerance to naive recipients with the serum of mice gavaged with Ova 1 h before. The implications of these findings about oral tolerance induction are discussed
Resumo:
Oral tolerance is a phenomenon that may occur in animals exposed to protein antigens for the first time by the oral route. They become unable to produce immune responses at the levels normally observed when they are immunized parenterally with antigen in the presence of adjuvants. Lipids have been used as adjuvants for both parenteral and oral immunization. In the present study we coupled ovalbumin with palmitate residues by incubating the protein with the N-hydroxysuccinimide palmitate ester and tested the preparation for its ability to induce oral tolerance. This was performed by giving 20 mg of antigen to mice by the oral route 7 days prior to parenteral immunization in the presence of Al(OH)3. Mice were bled one week after receiving a booster that was given 2 weeks after primary immunization. Specific antibodies were detected by ELISA. Despite the fact that the conjugates are as immunogenic as the unmodified protein when parenterally injected in mice, they failed to induce oral tolerance. This discrepancy could be explained by differences in the intestinal absorption of the two forms of the antigen. In fact, when compared to the non-conjugated ovalbumin, a fast and high absorption of the lipid-conjugated form of ovalbumin was observed by "sandwich" ELISA.
Resumo:
The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS). When D002 (5-100 mg/kg body weight) was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46%) occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg) also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40%) and brain (28-44%) microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg) for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.
Resumo:
Initial contacts with a T-dependent antigen by mucosal routes may result in oral tolerance, defined as the inhibition of specific antibody formation after subsequent parenteral immunizations with the same antigen. We describe here an additional and permanent consequence of these initial contacts, namely, the blockade of secondary-type responsiveness to subsequent parenteral contacts with the antigen. When repeatedly boosted ip with small doses (3 µg) of ovalbumin (OVA) (or lysozyme), primed B6D2F1 mice showed progressively higher antibody responses. In contrast, mice primed after a single oral exposure to the antigen, although repeatedly boosted, maintained their secondary antibody titers on a level which was inversely proportional to the dose of antigen in the oral pretreatment. This phenomenon also occurred in situations in which oral tolerance was not induced. For example, senile 70-week-old B6D2F1 mice pretreated with a single gavage of 20 mg OVA did not become tolerant, i.e., they formed the same secondary levels of anti-OVA antibodies as non-pretreated mice. However, after 4 weekly challenges with 3 µg OVA ip, orally pretreated mice maintained the same anti-OVA serum levels, whereas the levels of control mice increased sequentially. This "stabilizing" effect of mucosal exposure was dose dependent, occurred with different proteins and was triggered by single or multiple oral or nasal exposures to the antigen.
Resumo:
Rats rendered hypothyroid by treatment with methimazole develop an exaggerated sodium appetite. We investigated here the capacity of hypothyroid rats (N = 12 for each group) to respond to a low dose of captopril added to the ration, a paradigm which induces an increase in angiotensin II synthesis in cerebral areas that regulate sodium appetite by increasing the availability of circulating angiotensin I. In addition, we determined the influence of aldosterone in hypothyroid rats during the expression of spontaneous sodium appetite and after captopril treatment. Captopril significantly increased (P<0.05) the daily intake of 1.8% NaCl (in ml/100 g body weight) in hypothyroid rats after 36 days of methimazole administration (day 36: 9.2 ± 0.7 vs day 32: 2.8 ± 0.6 ml, on the 4th day after captopril treatment). After the discontinuation of captopril treatment, daily 1.8% NaCl intake reached values ranging from 10.0 ± 0.9 to 13.9 ± 1.0 ml, 48 to 60 days after treatment with methimazole. Aldosterone treatment significantly reduced (P<0.05) saline intake before (7.3 ± 1.6 vs day 0, 14.4 ± 1.3 ml) and after captopril treatment. Our results demonstrate that, although hypothyroid rats develop a deficiency in the production of all components of the renin-angiotensin-aldosterone system, their capacity to synthesize angiotensin II at the cerebral level is preserved. The partial reversal of daily 1.8% NaCl intake during aldosterone treatment suggests that sodium retention reduces both spontaneous and captopril-induced salt appetite.
Resumo:
Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI) are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10). Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.