197 resultados para Micronutrient and fertilization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sixteen common bean cultivars were compared concerning the physicochemical characteristics of their raw seeds in the course of two consecutive harvests, as well as the effect of storage conditions on starch and dietary fiber content of cooked beans. Using cluster analysis it was possible to identify groups of cultivars with different nutritional features. Bean cultivars were categorized into four different groups according either to their macronutrient content (crude protein-PROT, total dietary fiber-TDF, insoluble dietary fiber-IDF, soluble dietary fiber-SDF, digestible starch-DS, and resistant starch-RS) or to their micronutrient levels (Fe, Zn, Mn, Cu, Ca, Mg, and P). Guateian 6662 and Rio Tibagi appeared to be the most suitable cultivars to prevent nutritional deficiencies, because they had high PROT, DS, Fe, and Zn content. The high total dietary fiber and RS content of Iraí, Minuano, and TPS Bonito cultivars, and specially the high soluble fiber content of Guateian 6662 and Rio Tibagi cultivars suggests that they could have a beneficial role in controlling blood lipid and glucose levels. Cooked beans had a decrease in DS and an increase in RS content after storage (4 °C or -20 °C), but these changes were more prominent in beans that had low RS content before cooking than in those of high RS content. TDF, IDF, and SDF did not change after storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron is an essential micronutrient in the metabolism of almost all living organisms; however, its deficiency is well documented especially in pregnant women and in children. Iron salts as a dietary supplement have low bioavailability and can cause gastrointestinal discomforts. Iron enriched yeasts can provide a supplementation of this micronutrient to the diet because this mineral has a better bioavailability when bonded to yeast cell macromolecules. These yeasts can be used as feed supplement for human and animals and also as baker's yeast. Baker's yeast Saccharomyces cerevisiae was cultivated in a reactor employing yeast media supplemented with 497 mg ferrous sulfate.L-1, and the resultant biomass incorporated 8 mg Fe.g-1 dry matter. This biomass maintained its fermenting power regarding both water displace measurement through carbonic dioxide production and bakery characteristics. The bread produced using the yeast obtained by cultivation in yeast media supplemented with iron presented six times more iron than the bread produced using the yeast obtained by cultivation without iron supplementation.