209 resultados para MARROW FAILURE SYNDROMES
Resumo:
Heart failure is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. Chronic neurohumoral excitation (i.e., sympathetic hyperactivity) has been considered to be a hallmark of heart failure and is associated with a poor prognosis, cardiac dysfunction and remodeling, and skeletal myopathy. Aerobic exercise training is efficient in counteracting sympathetic hyperactivity and its toxic effects on cardiac and skeletal muscles. In this review, we describe the effects of aerobic exercise training on sympathetic hyperactivity, skeletal myopathy, as well as cardiac function and remodeling in human and animal heart failure. We also discuss the mechanisms underlying the effects of aerobic exercise training.
Resumo:
Patients undergoing neurosurgery are predisposed to a variety of complications related to mechanical ventilation (MV). There is an increased incidence of extubation failure, pneumonia, and prolonged MV among such patients. The aim of the present study was to assess the influence of extubation failure and prolonged MV on the following variables: postoperative pulmonary complications (PPC), mortality, reoperation, tracheostomy, and duration of postoperative hospitalization following elective intra-cranial surgery. The study involved a prospective observational cohort of 317 patients submitted to elective intracranial surgery for tumors, aneurysms and arteriovenous malformation. Preoperative assessment was performed and patients were followed up for the determination of extubation failure and prolonged MV (>48 h) until discharge from the hospital or death. The occurrence of PPC, incidence of death, the need for reoperation and tracheostomy, and the length of hospitalization were assessed during the postoperative period. Twenty-six patients (8.2%) experienced extubation failure and 30 (9.5%) needed prolonged MV after surgery. Multivariate analysis showed that extubation failure was significant for the occurrence of death (OR = 8.05 [1.88; 34.36]), PPC (OR = 11.18 [2.27; 55.02]) and tracheostomy (OR = 7.8 [1.12; 55.07]). Prolonged MV was significant only for the occurrence of PPC (OR = 4.87 [1.3; 18.18]). Elective intracranial surgery patients who experienced extubation failure or required prolonged MV had a higher incidence of PPC, reoperation and tracheostomy and required a longer period of time in the ICU. Level of consciousness and extubation failure were associated with death and PPC. Patients who required prolonged MV had a higher incidence of extubation failure.
Resumo:
Imatinib mesylate (IM) is used to treat chronic myeloid leukemia (CML) because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM). The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM), using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM) reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells) increased. At higher concentrations (15 µM), the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control). Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved.
Resumo:
The purpose of the present study was to explore the usefulness of the Mexican sequential organ failure assessment (MEXSOFA) score for assessing the risk of mortality for critically ill patients in the ICU. A total of 232 consecutive patients admitted to an ICU were included in the study. The MEXSOFA was calculated using the original SOFA scoring system with two modifications: the PaO2/FiO2 ratio was replaced with the SpO2/FiO2 ratio, and the evaluation of neurologic dysfunction was excluded. The ICU mortality rate was 20.2%. Patients with an initial MEXSOFA score of 9 points or less calculated during the first 24 h after admission to the ICU had a mortality rate of 14.8%, while those with an initial MEXSOFA score of 10 points or more had a mortality rate of 40%. The MEXSOFA score at 48 h was also associated with mortality: patients with a score of 9 points or less had a mortality rate of 14.1%, while those with a score of 10 points or more had a mortality rate of 50%. In a multivariate analysis, only the MEXSOFA score at 48 h was an independent predictor for in-ICU death with an OR = 1.35 (95%CI = 1.14-1.59, P < 0.001). The SOFA and MEXSOFA scores calculated 24 h after admission to the ICU demonstrated a good level of discrimination for predicting the in-ICU mortality risk in critically ill patients. The MEXSOFA score at 48 h was an independent predictor of death; with each 1-point increase, the odds of death increased by 35%.
Resumo:
Glycosaminoglycans (GAGs) participate in a variety of processes in the kidney, and evidence suggests that gender-related hormones participate in renal function. The aim of this study was to analyze the relationship of GAGs, gender, and proteinuria in male and female rats with chronic renal failure (CRF). GAGs were analyzed in total kidney tissue and 24-h urine of castrated (c), male (M), and female (F) Wistar control (C) rats (CM, CMc, CF, CFc) and after 30 days of CRF induced by 5/6 nephrectomy (CRFM, CRFMc, CRFF, CRFFc). Total GAG quantification and composition were determined using agarose and polyacrylamide gel electrophoresis, respectively. Renal GAGs were higher in CF compared to CM. CRFM presented an increase in renal GAGs, heparan sulfate (HS), and proteinuria, while castration reduced these parameters. However, CRFF and CRFFc groups showed a decrease in renal GAGs concomitant with an increase in proteinuria. Our results suggest that, in CRFM, sex hormones quantitatively alter GAGs, mainly HS, and possibly the glomerular filtration barrier, leading to proteinuria. The lack of this response in CRFMc, where HS did not increase, corroborates this theory. This pattern was not observed in females. Further studies of CRF are needed to clarify gender-dependent differences in HS synthesis.
Resumo:
In this study, electrical and structural remodeling of ventricles was examined in tachycardia-induced heart failure (HF). We studied two groups of weight-matched adult male mongrel dogs: a sham-operated control group (n=5) and a pacing group (n=5) that underwent ventricular pacing at 230 bpm for 3 weeks. Clinical symptoms of congestive HF were observed in both groups. Their hemodynamic parameters were determined and the severity of the HF was evaluated by M-mode echocardiography. Changes in heart morphology were observed by scanning electron and light microscopy. Ventricular action potential duration (APD), as well as the 50 and 90% APD were measured in both groups. All dogs exhibited clinical symptoms of congestive HF after rapid right ventricular pacing for 3 weeks. These data indicate that rapid, right ventricular pacing produces a useful experimental model of low-output HF in dogs, characterized by biventricular pump dysfunction, biventricular cardiac dilation, and non-ischemic impairment of left ventricular contractility. Electrical and structural myocardial remodeling play an essential role in congestive HF progression, and should thus be prevented.
Resumo:
Exercise capacity and quality of life (QOL) are important outcome predictors in patients with systolic heart failure (HF), independent of left ventricular (LV) ejection fraction (LVEF). LV diastolic function has been shown to be a better predictor of aerobic exercise capacity in patients with systolic dysfunction and a New York Heart Association (NYHA) classification ≥II. We hypothesized that the currently used index of diastolic function E/e' is associated with exercise capacity and QOL, even in optimally treated HF patients with reduced LVEF. This prospective study included 44 consecutive patients aged 55±11 years (27 men and 17 women), with LVEF<0.50 and NYHA functional class I-III, receiving optimal pharmacological treatment and in a stable clinical condition, as shown by the absence of dyspnea exacerbation for at least 3 months. All patients had conventional transthoracic echocardiography and answered the Minnesota Living with HF Questionnaire, followed by the 6-min walk test (6MWT). In a multivariable model with 6MWT as the dependent variable, age and E/e' explained 27% of the walked distance in 6MWT (P=0.002; multivariate regression analysis). No association was found between walk distance and LVEF or mitral annulus systolic velocity. Only normalized left atrium volume, a sensitive index of diastolic function, was associated with decreased QOL. Despite the small number of patients included, this study offers evidence that diastolic function is associated with physical capacity and QOL and should be considered along with ejection fraction in patients with compensated systolic HF.
Resumo:
Bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) have been shown to exhibit a synergistic effect to promote bone repair and healing. In this study, we constructed a novel adenovirus with high coexpression of BMP2 and bFGF and evaluated its effect on osteogenic differentiation of goat bone marrow progenitor cells (BMPCs). Recombinant adenovirus Ad-BMP2-bFGF was constructed by using the T2A sequence. BMPCs were isolated from goats by density gradient centrifugation and adherent cell culture, and were then infected with Ad-BMP2-bFGF or Ad-BMP2. Expression of BMP2 and bFGF was detected by ELISA, and alkaline phosphatase (ALP) activity was detected by an ALP assay kit. In addition, von Kossa staining and immunocytochemical staining of collagen II were performed on BMPCs 21 days after infection. There was a high coexpression of BMP2 and bFGF in BMPCs infected with Ad-BMP2-bFGF. Twenty-one days after infection, ALP activity was significantly higher in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. Larger and more mineralized calcium nodules, as well as stronger collagen II staining, were observed in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. In summary, we developed a novel adenovirus vector Ad-BMP2-bFGF for simultaneous high coexpression of BMP2 and bFGF, which could induce BMPCs to differentiate efficiently into osteoblasts.
Resumo:
The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.
Resumo:
Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.
Resumo:
The purpose of this study was to determine the effect of respiratory muscle fatigue on intercostal and forearm muscle perfusion and oxygenation in patients with heart failure. Five clinically stable heart failure patients with respiratory muscle weakness (age, 66±12 years; left ventricle ejection fraction, 34±3%) and nine matched healthy controls underwent a respiratory muscle fatigue protocol, breathing against a fixed resistance at 60% of their maximal inspiratory pressure for as long as they could sustain the predetermined inspiratory pressure. Intercostal and forearm muscle blood volume and oxygenation were continuously monitored by near-infrared spectroscopy with transducers placed on the seventh left intercostal space and the left forearm. Data were compared by two-way ANOVA and Bonferroni correction. Respiratory fatigue occurred at 5.1±1.3 min in heart failure patients and at 9.3±1.4 min in controls (P<0.05), but perceived effort, changes in heart rate, and in systolic blood pressure were similar between groups (P>0.05). Respiratory fatigue in heart failure reduced intercostal and forearm muscle blood volume (P<0.05) along with decreased tissue oxygenation both in intercostal (heart failure, -2.6±1.6%; controls, +1.6±0.5%; P<0.05) and in forearm muscles (heart failure, -4.5±0.5%; controls, +0.5±0.8%; P<0.05). These results suggest that respiratory fatigue in patients with heart failure causes an oxygen demand/delivery mismatch in respiratory muscles, probably leading to a reflex reduction in peripheral limb muscle perfusion, featuring a respiratory metaboreflex.
Resumo:
We investigated the biological significance of microRNA-126 (miR-126) expression in patients with atrial fibrillation (AF) and/or heart failure (HF) to examine the possible mechanism of miR-126-dependent AF and development of HF. A total of 103 patients were divided into three groups: AF group (18 men and 17 women, mean age: 65.62±12.72 years), HF group (17 men and 15 women, mean age: 63.95±19.71 years), and HF-AF group (20 men and 16 women, mean age: 66.56±14.37 years). Quantitative real-time PCR was used to measure relative miR-126 expression as calculated by the 2−ΔΔCt method. miR-126 was frequently downregulated in the 3 patient groups compared with controls. This reduction was significantly lower in permanent and persistent AF patients than in those with paroxysmal AF (P<0.05, t-test). Moreover, miR-126 expression was markedly lower in the HF-AF group compared with the AF and HF groups. The 3 patient groups had higher N-terminal prohormone brain natriuretic peptide (NT-proBNP) levels, lower left ventricular ejection fraction (LVEF), larger left atrial diameter, and higher cardiothoracic ratio compared with controls. There were significant differences in NT-proBNP levels and LVEF among the AF, HF, and HF-AF groups. Pearson correlation analysis showed that relative miR-126 expression was positively associated with LVEF, logarithm of NT-proBNP, left atrial diameter, cardiothoracic ratio, and age in HF-AF patients. Multiple linear regression analysis showed that miR-126 expression was positively correlated with LVEF, but negatively correlated with the logarithm of NT-pro BNP and the cardiothoracic ratio (all P<0.05). Serum miR-126 levels could serve as a potential candidate biomarker for evaluating the severity of AF and HF. However, to confirm these results, future studies with a larger and diverse patient population are necessary.
Resumo:
The Failure Mode and Effect Analysis (FMEA) was applied for risk assessment of confectionary manufacturing, in whichthe traditional methods and equipment were intensively used in the production. Potential failure modes and effects as well as their possible causes were identified in the process flow. Processing stages that involve intensive handling of food by workers had the highest risk priority numbers (RPN = 216 and 189), followed by chemical contamination risks in different stages of the process. The application of corrective actions substantially reduced the RPN (risk priority number) values. Therefore, the implementation of FMEA (The Failure Mode and Effect Analysis) model in confectionary manufacturing improved the safety and quality of the final products.
Cytotoxicity and mutagenicity of cola and grape flavored soft drinks in bone marrow cells of rodents
Resumo:
Due to the large consumption of soft drinks in Brazil and worldwide in recent years and considering that some of the components present in their composition pose potential risks to human health, the aim of this study was to evaluate the cytotoxic and mutagenic potential of specific cola and grape-flavored soft drink brands. Bone marrow cells of Wistar rats were initially treated by gavage with one single dose of Cola or Grape soft drink, which was next offered ad libitum (instead of water) for 24 hours. A negative control treatment was performed by administering one single dose of water and a positive control administering cyclophosphamide intraperitoneally. Statistical analysis showed that the Cola and Grape soft drinks studied were not cytotoxic. However, the Cola soft drink proved mutagenic in this experiment treatment time. Therefore, this study serves as a warning about the consumption of Cola-flavored soft drink and for the need for further subchronic and chronic studies on soft drinks in order to evaluate the long term mutagenic and cytotoxic effects of these substances.