351 resultados para Infecção in vitro
Resumo:
Infections by Cryptococcus strains other than C. neoformans have been detected in immunocompromised patients. Of these strains, three are considered human pathogens: C. albidus, C. laurenttii, and C. uniguttulatus. This study deals with the in vitro susceptibility of Cryptococcus to drugs such as amphotericin B, itraconazole, fluconazole, and 5-fluorocytosine. Environmental Cryptococcus isolates (50) distributed as follows: C. neoformans var. neoformans (16), C. albidus (17), C. laurentii (14), and C. uniguttulatus (3) were evaluated by the micro and macrodilution techniques, according to EUCAST and NCCLS recommendations, respectively. Considering both methodologies the respective minimal inhibitory concentrations (MIC) were 0.125 and 2 µg/ml for amphotericin B, 0.06 and 8 µg/ml for itraconazole, and 0.5 and more than 64 µg/ml for fluconazole and 5-fluorocytosine. Agreement percentages for the two methodologies were 100% for amphotericin B and fluconazole for all the strains tested. For itraconazole, the agreement percentage was 81.3% in the C. neoformans strain and 100% for all the others. All species had a agreement percentage of 94.1 to 100% when susceptibility to 5-fluorocytosine was tested. It is concluded that environmental isolates of C. neoformans var. neoformans, C. albidus, C. laurentii, and C. uniguttulatus may show high MICs against certain drugs, suggesting in vitro primary resistance to the antifungals tested.
Resumo:
There are wide variations in the threshold used to define in vitro resistance of Plasmodium falciparum to amodiaquine (AQ), probably due to differences in methodology and interpretation. In vitro susceptibility data of Colombian P. falciparum strains to AQ and N-desethylamodiaquine is used to illustrate the need to standardized methodologies and compare inhibitory concentrations, instead of resistant/susceptible phenotypes, when studying the mechanisms of resistance to AQ and monitoring drug susceptibility trends in the field.
Resumo:
Protease secretion by Giardia duodenalis trophozoites upon interaction with epithelial cells and its association with the parasite adhesion was studied in co-cultures of parasites with IEC6 epithelial cell monolayers in the presence or absence of protease inhibitors. Proteolytic activity in supernatants from trophozoites was enhanced when they were co-cultured with IEC6 cells. This activity was strongly inhibited by pre-incubation of live trophozoites with E-64 and TPCK and a concomitant inhibition of parasite adhesion to IEC6 cells was observed. These data suggest that trophozoites secrete cysteine-type proteases that play a role in the adhesion of G. duodenalis to epithelial cells.
Resumo:
The methanol extracts from five different plant families (Asteraceae, Euphorbiaceae, Melastomataceae, Rubiaceae, and Solanaceae) collected at Regional Natural Park Ucumarí (Colombia), were screened for their acetylcholinesterase inhibitory activity through the modified Ellman's spectrophotometric method. The best inhibitory activities on this study were shown by the extracts of Solanum leucocarpum Dunal (IC50 = 204.59 mg/l) and Witheringia coccoloboides (Damm) (IC50 = 220.68 mg/l), both plants belonging to the Solanaceae family.
Resumo:
Experimental chronic (45-day-old) skin lesion in hamster hind foot induced by Leishmania (Viannia) lainsoni infection showed the presence of promastigote forms in the tissue, inside parasitophorous vacuoles, as assessed by transmission electron microscopy. Experimental in vitro interaction (24 and 48 h) between Leishmania (V.)lainsoni and J774-G8 macrophage cells also demonstrated the same profile. This morphological aspect is unusual, since in this parasite genus only amastigote forms have been described as the resistant and obligate intracellular forms.
Resumo:
Praziquantel (PZQ) is effective against all the evolutive phases of Schistosoma mansoni. Infected Biomphalaria glabrata snails have their cercarial shedding interrupted when exposed to PZQ. Using primary in vitro transformed sporocysts, labeled with the probe Hoechst 33258 (indicator of membrane integrity), and lectin of Glycine max (specific for carbohydrate of N-acetylgalactosamine membrane), we evaluated the presence of lysosomes at this evolutive phase of S. mansoni, as well as the influence of PZQ on these acidic organelles and on the tegument of the sporocyst. Although the sporocyst remained alive, it was observed that there was a marked contraction of its musculature, and there occurred a change in the parasite's structure. Also, the acidic vesicles found in the sporocysts showed a larger delimited area after contact of the parasites with PZQ. Damages to the tegument was also observed, as show a well-marked labeling either with Hoechst 33258 or with lectin of Glycine max after contact of sporocysts with the drug. These results could partially explain the interruption/reduction mechanism of cercarial shedding in snails exposed to PZQ.
Resumo:
Trypanosoma cruzi is a hemoflagelate parasite associated with heart dysfunctions causing serious problems in Central and South America. Beagle dogs develop the symptoms of Chagas disease in humans, and could be an important experimental model for better understanding the immunopathogenic mechanisms involved in the chagasic infection. In the present study we investigated the relation among biological factors inherent to the parasite (trypomastigote polymorphism and in vitro infectivity) and immunoglobulin production, inflammation, and fibrosis in the heart of Beagle dogs infected with either T. cruzi Y or Berenice-78 strains. In vitro infectivity of Vero cells as well as the extension of cardiac lesions in infected Beagle was higher for Y strain when compared to Berenice-78 strain. These data suggested that in vitro infectivity assays may correlate with pathogenicity in vivo. In fact, animals infected with Y strain, which shows prevalence of slender forms and high infectivity in vitro, presented cardiomegaly, inflammation, and fibrosis in heart area. Concerning the immunoglobulin production, no statistically significant difference was observed for IgA, IgM or IgG levels among T. cruzi infected animals. However, IgA together IgM levels have shown to be a good marker for the acute phase of Chagas disease.
Resumo:
In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.
Resumo:
Peptides with broad-spectrum antimicrobial activity, known as antimicrobial peptides, have been isolated from distinct organisms. This paper describes the in vitro evaluation of the cytotoxicity and antiviral activity of nine peptides with different structures and origins against herpes simplex virus type 1, human adenovirus respiratory strain, and rotavirus SA11. Most of the evaluated peptides presented antiviral activity but they were only active near cytotoxic concentrations. Nevertheless, these results seem promising, and further modifications on the peptide's structures may improve their selectivity and reduce their cytotoxicity.
Resumo:
The great difficulties in treating people and animals suffering from cryptosporidiosis have prompted the development of in vitro experimental models. Due to the models of in vitro culture, new extracellular stages of Cryptosporidium have been demonstrated. The development of these extracellular phases depends on the technique of in vitro culture and on the species and genotype of Cryptosporidium used. Here, we undertake the molecular characterization by polymerase chain reaction-restriction fragment lenght polymorphism of different Cryptosporidium isolates from calves, concluding that all are C. parvum of cattle genotype, although differing in the nucleotide at positions 472 and 498. Using these parasites, modified the in vitro culture technique for HCT-8 cells achieving greater multiplication of parasites. The HCT-8 cell cultures, for which the culture had not been renewed in seven days, were infected with C. parvum sporozoites in RPMI-1640 medium with 10% IFBS, CaCl2 and MgCl2 1 mM at pH 7.2. Percentages of cell parasitism were increased with respect to control cultures (71% at 48 h vs 14.5%), even after two weeks (47% vs 1.9%). Also, the percentage of extracellular stages augmented (25.3% vs 1.1% at 96 h). This new model of in vitro culture of C. parvum will enable easier study of the developmental phases of C. parvum in performing new chemotherapeutic assays.
Resumo:
An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune ethiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applyed for dengue fever.
Resumo:
The leishmanicidal activity of four batches of meglumine antimoniate, produced in Farmanguinhos-Fiocruz, Brazil (TAMs), was assessed and compared to Glucantime®-Aventis Pharma Ltda. Using the amastigote-like in vitro model, the active concentrations of Sb v varied from 10µg/ml to 300 µg/ml for L. (L.) chagasi and from 50µg/ml to 300µg/ml for L. (L.) amazonensis, with no statistically significant differences among the four batches of TAMs and Glucantime®. The inhibitory concentrations (IC50) determined by the amastigote-infected macrophage model for TAM01/03 and Glucantime® were, respectively: 26.3µg/ml and 127.6µg/ml for L. chagasi, 15.4µg /ml and 22.9µg/ml for L. amazonensis, and 12.1µg/ml and 24.2µg/ml for L. (V.) braziliensis. The activities of the four batches of TAMs were confirmed in an in vivo model by assessing, during eight weeks skin lesions caused by L. braziliensis in hamster that were treated with 20mg Sb v/Kg/day for 30 consecutive days. The meglumine antimoniate produced by Farmanguinhos was as effective as the reference drug, Glucantime®-Aventis, against three species of Leishmania that are of medical importance in Brazil.
Resumo:
In the present study, an extensive in vitro antimicrobial profiling was performed for three medicinal plants grown in Cuba, namely Simarouba glauca, Melaleuca leucadendron and Artemisia absinthium. Ethanol extracts were tested for their antiprotozoal potential against Trypanosoma b. brucei, Trypanosoma cruzi, Leishmania infantum and Plasmodium falciparum. Antifungal activities were evaluated against Microsporum canis and Candida albicans whereas Escherichia coli and Staphylococcus aureus were used as test organisms for antibacterial activity. Cytotoxicity was assessed against human MRC-5 cells. Only M. leucadendron extract showed selective activity against microorganisms tested. Although S. glauca exhibited strong activity against all protozoa, it must be considered non-specific. The value of integrated evaluation of extracts with particular reference to selectivity is discussed.
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
Nontuberculous mycobacteria are ubiquitous and saprophytic organisms that have been implicated in a wide spectrum of diseases due to an increasing number of immunocompromised patients. The natural resistance of atypical mycobacteria to classical antituberculous drugs has encouraged research into new chemotherapeutic agents and drug combinations. The aim of this study was to determine the in vitro antimycobacterial activities of ²-lapachone alone and in combination with isoniazid against Mycobacterium fortuitum and Mycobacterium smegmatis via the Time-Kill Curve method. A 2 log10 CFU/mL reduction in the M. smegmatis culture was observed 72 h after adding ²-lapachone at its minimum inhibitory concentration. This drug sterilised the culture in 120 h. For M. fortuitum, a reduction of 1.55 log10 CFU/mL occurred in 24 h, but regrowth was seen in contact with ²-lapachone. Both microorganisms were resistant to isoniazid. Regrowth of M. fortuitum and M. smegmatis was observed at 48 h and 72 h, respectively. In combination, these two drugs had a bactericidal effect and sterilised both cultures in 96 h. These results are valuable because antibiotic-resistant bacteria are a major public health problem.