282 resultados para Fusão de dados de sensores.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is the description of the strategies and advances in the use of MIP in the development of chemical sensors. MIP has been considered an emerging technology, which allows the synthesis of materials that can mimic some highly specific natural receptors such as antibodies and enzymes. In recent years a great number of publications have demonstrated a growth in their use as sensing phases in the construction of sensors . Thus, the MIP technology became very attractive as a promising analytical tool for the development of sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes a process for metal recovery from spent NiMo and CoMo/Al2O3 commercial hydrorefining catalysts. The samples were treated by fusion with potassium hydrogen sulfate (5 h, 600 ºC) with a KHSO4/catalyst mass ratio of 10:1. After fusion the solid was solubilized in water (100 ºC), leaving silicon compounds as residue. Losses of nickel and cobalt may reach 16 wt% of the amount present in the sample, depending on the silicon content. Soluble metals were isolated by selective precipitation techniques (nickel, cobalt, aluminum) or by solvent extraction with methyl-isobutyl ketone (molybdenum) in a hydrochloric acid medium. All metals were recovered in very good yields except for nickel and cobalt in the presence of considerable amounts of silicon. Soluble wastes consist of potassium/sodium sulfates/chlorides. Solid wastes correspond to about 4 wt% of the catalyst and can be discarded in industrial dumps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials make up an emerging area in Chemistry and in the science of materials. This area constitutes the development of methods for synthesizing nanoscopic particles of a given material used for scientific investigation. Nanomaterials have a wide range of commercial possibilities and technological applications, including their use in analytical chemistry, as well as in electronics, optics, engineering, medicine, devices for liberation of drugs, bioencapsulation, among others. This paper presents a summary about nanoelectrodes, devices built from nanoparticles, which show great potential as electrochemical tools in many different types of analysis. The purpose of this paper is to review the construction methodologies of nanoelectrodes, and to point out their successful applicability in the various fields of immune assays and other analytical procedures with quantitative purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical sensors have attracted considerable attention in recent years because they provide data about the chemical state of our surroundings and the dynamics of the chemical transformations in the form a spatially resolved image. Particular interest has been directed to measurements in restricted-volume samples as new technologies enable the fabrication of miniaturized versions of sensors with reproducible characteristics. Taking these aspects into consideration, this review focuses on the use of electrodes of micrometer dimensions to acquire chemical information in microdomains in which concentrations may not be spatially homogeneous. This is possible because microelectrodes allow fast-response measurements with micrometer resolution to be performed. On the other hand, the use of microelectrodes as amperometric sensors presents an inherent drawback owing to the insufficient specificity toward the substrate of interest. Hence, some comments on strategies to enhance the selectivity of amperometric sensors are also made. Finally, recent applications of structurally microscopic electrodes as in vivo sensors are shown, as well as a prospect of the future trend in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of the availability of large databases of chromatographic data on several standardized systems, one major task in systematic toxicological analysis remains, namely how to handle the experimental data and retrieve data from the large available databases in a meaningful and productive way. To achieve this purpose, our group proposed an Internet-based tool using previously published STA databases, which interlaboratorial reproducibility tests have already evaluated. The developed software has the capability to calculate corrected chromatographic parameters, after the input of data obtained with standard mixtures of calibrators, and search the databases, currently incorporating TLC, color reactions, GC and HPLC data. At the end of the process, a list with candidate substances and their similarity indexes is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4). Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An activity for introducing hierarchical cluster analysis (HCA) and principal component analysis (PCA) during the Instrumental Analytical Chemistry course is presented. The posed problem involves the discrimination of mineral water samples according to their geographical origin. Thirty-seven samples of 9 different brands were considered and the results from the determination of Na, K, Mg, Ca, Sr and Ba were taken into account. Non-supervised methods for pattern recognition were explored to construct a dendrogram, score and loading plots. The devised activity can be adopted for introducing Chemometrics devoted to data handling, stressing its importance in the context of modern Analytical Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work is to investigate the effects of blending and chemical interesterification reactions on the softening and melting behavior of chicken fat, its stearin and medium chain triacylglycerols, and blends thereof in various ratios. Chemical interesterification is a promising alternative to the current processes of modifying the physical properties of fats. In the experimental design 7 samples corresponding to 7 different blend proportions were used. The results were represented in triangular diagrams. The addition of stearin influenced the softening and melting points. The mixture response surface methodology proved to be an extremely useful tool for the optimization of the fat mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytochemical investigation from leaves of the Qualea grandiflora (Vochysiaceae) resulted in the isolation and identification of kaempferol-3-O-α-L-(4"-E-p-coumaroyl)-rhamnoside, kaempferol-3-O-α-L-(4"-Z-p-coumaroyl)-rhamnoside, squalene, phytol, lupeol, α-amyrin, β-amyrin, sitosterol, sitostenone, sitosterol-3-O-β-D-glucopyranoside, ursolic and oleanolic acids. The structures of the compounds were identified by 1D- and 2D-NMR experiments, mass and UV spectrometry and comparison with literature data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical chemical sensors with detection in the near and mid infrared region are reviewed. Fundamental concepts of infrared spectroscopy and optical chemical sensors are briefly described, before presenting some aspects on optical chemical sensors, such as synthesis of NIR and IR reagents, preparation of new materials as well as application in determinations of species of biological, industrial and environmental importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary mixture phase diagrams are normally obtained from thermal analysis involving freezing point curves. However, that approach is not always reliable and easy to follow to all kinds of mixtures in any proportion. In fact, even for a simple system, such as NaCl-H2O, this freezing methodology gives mixed results when one starts from a solid-solution system, due mostly to the formation of the NaCl.2H2O, which has an incongruent melting point, and the dependence of its solubility with the temperature. In this work we report a trustworthy, simple and cheap method involving heating curves to drawn the NaCl-H2O phase diagram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most relevant advances on analytical applications of ionic liquids (IL) as binder in the construction of electrochemical sensors and biosensors based on carbon paste are presented. This new class of solvents - the IL - has received great attention in electroanalytical researches due to the excellent physical and chemical properties of these materials, such as high conductivity, low toxicity, good stability, large electrochemical window and catalytic ability. Recently, the interest in electrodes modified with IL, especially when combined with metallic nanoparticles, has increased expressively due to improve the sensitivity and others advantages discussed in this review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the inherent limitations of the analytical methods of measurement, environmental exposure data often present observations described as below a certain detection limit, also called left-censored data. Censored data directly interferes in almost all types of statistical analyzes, including descriptive parameters, hypothesis testing, confidence intervals, correlations and regressions. In this work, we investigated the performance of the main classes of methods from major publications available in the literature, considering their advantages and limitations. Some criteria for selecting the best method of dealing with censored data are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatiotemporal pattern formation in reaction-transport systems takes place spontaneously when the system is kept far from thermodynamic equilibrium. Targets, reaction fronts, waves, spirals, spots and stripes are some typical examples of selforganized structuring. In electrochemical systems, monitoring spatiotemporal patterns of potential in the solid/liquid interface can be done by the use of equally distributed microprobes located close to the working electrode. However, the physical size of each probe can limit the spatial resolution and alter mass transport properties. In contrast, the direct measurement of discrete electrodes does not suffer from this limitation and allows the accurate manipulation of the spatial coupling through changes in resistors connected to the electric circuit. In this paper, the development of an electrochemical setup for multichannel data acquisition with spatiotemporal resolution is described, especially to monitor low levels of currents usually observed in the electro-oxidation of small organic molecules.