202 resultados para Chemotherapy - Diarrhoea


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review is made of the recorded species of the coccidian genus Cyclospora and major events leading up to the discovery of C. cayetanensis, which is responsible for serious outbreaks of diarrhoea in man and is one of the aetiological agents of "traveller's diarrhoea". Humans appear to be the specific hosts, with the entire life-cycle in the intestine: to date there is no convincing evidence that the disease is a zoonosis. A description is given of oocysts and endogenous stages of C. schneideri n.sp., in the snake Anilius scytale scytale. Sporulation is exogenous and completed after about one week at 24-26º. Mature oocysts 19.8 × 16.6 (15.1 × 13.8-25.7 × 20.1), shape-index 1.2 (1.0-1.3): no oocyst residuum or polar bodies. Oocyst wall a single colourless, smooth layer with no micropyle: it is rapidly deformed or broken. Sporocysts 13.6 × 9.4 (11.3 × 8.3-15.1 × 9.9), shape-index 1.4 (1.2-1.5) with an inconspicuous Stieda body. Sporozoites 11-13 × 2.5-3. Endogenous stages are intracytoplasmic in the epithelial cells of the small intestine and with the characters of the Eimeriorina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The levels of complement C3 and C4 components were determined in non-indigenous (creoles) and indigenous (Warao) populations, the latter with an extremely high tuberculosis (TB) rate. Serum samples from 209 adults were studied and classified in 4 groups taking into account tuberculin skin tests (TST): (1) the group of Warao patients (58 positive for the TST, WP TST+ and 9 negative for the TST, WP TST-), (2) the group of creole patients (34 positive for the TST, CP TST+ and 9 negative for the TST, CP TST-), (3) the group of healthy Warao controls (38 positive and 14 negative for TST, WC TST+ and WC TST-, respectively), (4) the creole controls (26 positive and 21 negative for the TST, CC TST+ and CC TST-, respectively). With respect to the results concerning the measurement of both complement C3 and C4 components with the exception of the WC TST and the CC groups, the WP TST+ and WP TST- as well as WC TST+ groups showed a significant frequency of individuals with decreased levels of complement C3 component (20.6, 33.3, and 26.3%, respectively) and also C4 component (12.0, 11.1, and 13.3%, respectively) in comparison to both creole patients (CP TST+, 8.82% and CP TST-, 0% and CP TST+, 5.88% and CP TST-, 0%) for C3 and C4, respectively. The study of these parameters carried out in 15 Warao subjects with active infection, before and after anti-TB chemotherapy,statisticallyconfirmedthat the effective chemotherapy did not restore normal levels of the complement C3 and C4 components among Warao patients. Aditional tests for hepatitis B or hepatitis C infection, and the profile of the hepatic proteins were not associated to the deficiency in production of the complement components.In conclusion, the results show that within the Warao population, a high percentage of subjects exhibit decreased levels of both complement C3 and C4 components independent of latent or active infection and the status of TST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95% of new cases and 98% of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular population of actively metabolizing and rapidly growing tubercle bacilli in cavitary lesions will contain organisms which are resistant to a single drug. Consequently, monotherapy or improperly administered two-drug therapies will select for drug-resistant mutants that may lead to drug resistance in the entire bacterial population. Thereby, despite the availability of effective chemotherapy and the moderately protective vaccine, new anti-TB agents are urgently needed to decrease the global incidence of TB. The resumption of TB, mainly caused by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and HIV epidemics, led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. The latter should be effective to combat both drug-susceptible and MDR/XDR-TB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small mammals are found naturally infected by Schistosoma mansoni, becoming a confounding factor for control programs of schistosomiasis in endemic areas. The aims of this study were: to investigate the infection rates by S. mansoni on the water-rat Nectomys squamipes during four years in endemic areas of Sumidouro, state of Rio de Janeiro, using mark-recapture technique; to compare two diagnostic methods for schistosomiasis; and to evaluate the effects of the chemotherapy in the human infected population on the rodent infection rates. The rodent infection rates of S. mansoni increased when rodent population sizes were lower. Coprology and serology results presented the same trends along time and were correlated. Serology could detect recent infection, including the false negatives in the coprology. The chemotherapy in the humans could not interrupt the rodent infection. Rodents can increase the schistosomiaisis transmission where it already exists, they probably maintain the transmission cycle in the nature and can be considered as biological indicators of the transmission sites of this parasite since they are highly susceptible to infection. The water-rats may present different levels of importance in the transmission dynamics of S. mansoni infection cycle for each area, and can be considered important wild-reservoirs of this human disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high level of protection elicited in rodents and primates by the radiation-attenuated schistosome vaccine gives hope that a human vaccine relying on equivalent mechanisms is feasible. In humans, a vaccine would be undoubtedly administered to previously or currently infected individuals. We have therefore used the olive baboon to investigate whether vaccine-induced immunity is compromised by a schistosome infection. We showed that neither a preceding infection, terminated by chemotherapy, nor an ongoing chronic infection affected the level of protection. Whilst IgM responses to vaccination or infection were short-lived, IgG responses rose with each successive exposure to the vaccine. Such a rise was obscured by responses to egg deposition in already-infected animals. In human trials it would be necessary to use indirect estimates of infection intensity to determine vaccine efficacy. Using worm burden as the definitive criterion, we demonstrated that the surrogate measures, fecal eggs, and circulating antigens, consistently overestimated protection. Regression analysis of the surrogate parameters on worm burden revealed that the principal reason for overestimation was the threshold sensitivity of the assays. If we extrapolate our findings to human schistosomiasis mansoni, it is clear that more sensitive indirect measures of infection intensity are required for future vaccine trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is responsible for over 8 million cases of tuberculosis (TB) annually. Natural products may play important roles in the chemotherapy of TB. The immunological activity of Davilla elliptica chloroform extract (DECE) was evaluated in vitro by the determination of hydrogen peroxide (H2O2), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-alpha) release in peritoneal macrophages cultures. DECE was also tested for its antimycobacterial activity against M. tuberculosis using the microplate alamar blue assay. DECE (50, 150, 250 µg/ml) stimulated the production of H2O2 (from 1,79 ± 0,23 to 7,27 ± 2,54; 15,02 ± 2,86; 20,5 ± 2,1 nmols) (means ± SD), NO (from 2,64 ± 1,02 to 25,59 ± 2,29; 26,68 ± 2,41; 29,45 ± 5,87 µmols) (means ± SD) and TNF-alpha (from 2,44 ± 1,46 to 30,37 ± 8,13; 38,68 ± 1,59; 41,6 ± 0,90 units/ml) (means ± SD) in a dose-dependent manner and also showed a promising antimycobacterial activity with a minimum inhibitory concentration of 62,5 µg/ml. This plant may have therapeutic potential in the immunological and microbiological control of TB.