273 resultados para solução saturada de NaCl
Resumo:
The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.
Resumo:
In this work the most abundant trehalose conformers for the isolated molecule as well as for the water solvated system are selected. The theoretical tecniques employed are ab initio calculations in the gas phase and in aqueous solution using the PCM model. A conformational map is built for the glycosidic angles (phi and psi) and the search for the most abundant structures is explained. The final structures are validated by the agreement found between experimental and theoretical values for ³J H,C along the glycosidic linkage.
Resumo:
The paper presents an introductory and general discussion on the quantum Monte Carlo methods, some fundamental algorithms, concepts and applicability. In order to introduce the quantum Monte Carlo method, preliminary concepts associated with Monte Carlo techniques are discussed.
Resumo:
Determination of Cr(VI) and Cr(III) was studied in soil samples accidentally contaminated with sulphochromic solution. Molecular absorption spectrophotometry based on the diphenylcarbazide method was used for the determination of Cr(VI) after its alkaline extraction. The total chromium concentration was determined using ICP OES. The quantification of Cr(III) was accomplished by subtracting the Cr(VI) concentration from the total chromium concentration. Regardless of the known contamination of the soil samples by sulphochromic solution, concentrations of Cr(VI) were below the detection limit. Addition and recovery experiments for Cr(VI) in soil samples with and without organic matter indicated its influence on the reduction of Cr(VI) to Cr(III).
Resumo:
Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using zeolites synthesized from fly ashes as an adsorbent. The adsorbents were characterized by XFR, XRD and SEM. Nearly 90 min of contact time are found to be sufficient for the adsorption of dye to reach equilibrium. Equilibrium data have been analyzed using Langmuir and Freundlich isotherms and the results were found to be well represented by the Freundlich isotherm equation. Adsorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics.
Resumo:
The polyelectrolyte complex (PEC) resulting from the reaction of sodium carboxymethylcellulose (CMC) and N,N,N-trimethylchitosan hydrochloride (TMQ) was prepared and then characterized by infrared spectroscopy and energy dispersive X rays analysis. The interactions involving the PEC and Cu2+ ions, humic acid and atrazine in aqueous medium were studied. From the adsorption isotherms the maximum amount adsorbed (Xmax) was determined as 61 mg Cu2+/g PEC, 171 mg humic acid/g PEC and 5 mg atrazine/g PEC. The results show that the CMC/TMQ complex has a high affinity for the studied species, indicating its potential application to remove them from aqueous media.
Resumo:
The metal ions removal on cashew bagasse, a low-cost material, has been studied by batch adsorption. The parameters chemical treatment, particle size, biosorbent concentration, and initial pH were studied. In this study the maximum ions removal was obtained on the cashew bagasse treated with 0.1 mol/L NaOH/3 h, at optimum particle size (20-59 mesh), biosorbent concentration (50 g/L) and initial solution pH 5. The kinetic study indicated that the adsorption metal follows pseudo-second order model for a multielementary system and equilibrium time was achieved in 60 min for all metal ions.
Resumo:
The capacity of natural zeolites and its host rock (dacite) to remove Pb2+ and Cr3+ from aqueous solutions has been investigated. Results showed that both samples prefer to remove Pb2+ instead of Cr3+. Almost 100% of Pb2+ was removed from solutions with concentration until 50 mg L-1 and 100 mg L-1 of this metal, respectively by dacite and zeolite. The equilibrium of metals adsorption process was reached during the first 30 min by both materials. Na+ can be used to recover Pb2+, but not to remove Cr3+ from the treated samples. The Sips model showed a good fit for experimental data of this study.
Resumo:
The tribocorrosion behavior of Ti6Al4V alloy was investigated in a Phosphate Buffered Saline (PBS) solution by a reciprocating wear, using alumina ball as the counterface material, at different normal forces and sliding velocities. Dry wear experiments were performed in order to compare with the tribocorrosion experiments at open circuit potential and under anodic polarization. Dry wear induced a superior damage on the counterface, forming larger and shallower wear tracks compared with those experiments performed in PBS solution. The anodic current was increased by wear; however the volume of oxidized metal in tribocorrosion experiments correspond to a relative low percentage of the wear track volume.
Resumo:
The tebuconazole photocatalytic degradation kinetics was studied in a batch reactor using TiO2 (P25-Degussa) as catalyst and a high pressure mercury lamp. The photolysis, adsorption and irradiation effects in the reaction rate were evaluated. Afterward, the suspension catalyst concentration and initial pH to the maximum reaction rate was determined. It was observed that the reaction rate can be approached by a pseudo-first order, with a maximum kinetics constant at 260 mg L-1catalyst concentration and pH 7.7.
Resumo:
Solid solution of iron doped potassium strontium niobate with KSr2(FeNb4)O15-Δ stoichiometry was prepared by high efficiency ball milling method. Structural characterization was carried out by X-ray diffraction. Crystalline structure was analyzed by the Rietveld refinements using the FullProf software. The results showed a tetragonal system with the tetragonal tungsten bronze structure - TTB (a = 12.4631 (2) Å and c = 3.9322 (6) Å, V = 610.78 (2) ų). In this work, the sites occupancy by the K+, Sr2+ and Fe3+ cations on the TTB structure were determined. NbO6 polihedra distortion and its correlation with the theoretical polarization are discussed.
Resumo:
In this work the photocatalytic degradation of sulfametoxazole, trimethoprim and potassium diclofenac was evaluated by using TiO2 and ZnO photocatalysts. In optimized experimental conditions (pH 4, TiO2: 50 mg) the TiO2-photocatalysis allowed an almost total degradation of the studied drugs with mineralization of about 80% at reaction times of 120 min. Some mechanistic differences were observed between TiO2 and ZnO in the degradation study involving potassium diclofenac. At the first reaction times the use of ZnO leads to generation of transient species that strongly absorb in the UV spectral region, a fact not observed in studies involving TiO2.
Resumo:
The quaternary chitosan was synthesized by reaction of chitosan with glycidyl trimethylammonium chloride. it was characterized by infrared spectra and conductometric titration. Adsorption of reactive blue 4 (RB4) and reactive red 120 (RR120) by quaternary chitosan was studied from aqueous medium. Two kinetic adsorption models were tested: pseudo first-order and pseudo second-order. The experimental data best fitted the pseudo second-order model. The Langmuir isotherm model provided the best fit to the equilibrium data in the concentration range investigated and the maximum adsorption capacity determined was 415 mg (RR120) and 637 mg (RB4) of reactive dye per gram of adsorbent.
Resumo:
Biogenic silica is used to describe compounds of hydrated silica (SiO2.nH2O), with specific shapes and sizes, deposited in plants. The chemical composition of biogenic silica and its stability in Jaraguá grass was studied in increasing concentration of NaOH. The analytical results demonstrated high concentration of Si, Al, Fe, Mg, P and low of Cu, Cd and Zn in the phytoliths composition. The silica bodies stability in NaOH solution with increasing concentration was different among the shapes and sizes. Silicified stomata and silicified plant tissues were dissolved along with the dumbbells because they are the less stable forms of biogenic silica.
Resumo:
This paper describes the adsorption of heavy metals ions from aqueous solution by hydrous niobium oxide. Three heavy metals were selected for this study: cadmium, lead and silver. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacity (Q0) for Pb2 +, Ag+ and Cd2 + was found to be 452.5, 188.68 and 8.85 mg g-1, respectively.