287 resultados para silty clay soil
Resumo:
The present essay is meant to provide some background on the evolution of the soil science community in Brazil, since its inception, to describe its current situation, and to outline a number of opportunities and challenges facing the discipline in decades to come. The origin of Brazilian agronomy dates back to the beginning of the 19th century as a subdiscipline of botany, and its association with chemistry would later establish it as a science. In the middle of the 19th century, agricultural chemistry was born as a result of this association, leading to the establishment of edaphology, a branch of Soil Science. Another branch of Soil Science, known as pedology, was established as an applied and scientific knowledge in Brazil during the middle of the 20th century. During the same period, the Brazilian Soil Science Society (SBCS) was created, merging the knowledge of both branches and gathering all scientists involved. Twenty years after the SBCS foundation, the creation of Graduate Programs made Brazilian Soil Science enter the modern era, generating crucial knowledge to reach the current levels of agricultural productivity. Part of a community composed of 25 Soil Departments, 15 Graduate Programs and a great number of institutions that promote research and technology transfer, Brazilian soil scientists are responsible for developing solutions for sustainable development, by generating, adapting and transferring technology to the benefit of the country. The knowledge produced by SBCS members has been particularly significant for Brazil to achieve the status of most competitive tropical agriculture in the world. In the future decades, Soil Science will still remain topical in discussions regarding environment care and production of food and fibers, in addition, it will be essential and strategic for certain issues, such as water quality, reducing poverty and development of renewable sources of energy.
Resumo:
Pasture productivity can drop due to soil compaction caused by animal trampling. Physical and mechanical alterations are therefore extremely important indicators for pasture management. The objective of this research was to: draw and evaluate the Mohr failure line of a Red Yellow Latossol under different pasture cycles and natural forest; calculate apparent cohesion; observe possible physical alterations in this soil; and propose a correction factor for stocking rates based on shear strength properties. This study was conducted between March/2006 and March/2007 on the Experimental Farm of Fundação de Ensino Superior de Passos, in Passos, state of Minas Gerais. The total study area covered 6 ha, of which 2 ha were irrigated pasture, 2 ha non-irrigated pasture and 2 ha natural forest. Brachiaria brizantha cv. MG-5 Vitória was used as forage plant. The pasture area was divided into paddocks. The Mohr failure line of samples of a Red Yellow Latossol under irrigated pasture equilibrated at a tension of water content of 6 kPa indicated higher shear strength than under non-irrigated pasture. The shear strength under irrigated pasture and natural forest was higher than under non-irrigated pasture. At a tension of water content of 33 kPa no difference was found in shear strength between management and use. Possible changes in soil structure were caused by apparent cohesion. The values of the correction factor were close to 1, which may indicate a possible soil compaction in prolonged periods of management.
Resumo:
Soil moisture is the property which most greatly influences the soil dielectric constant, which is also influenced by soil mineralogy. The aim of this study was to determine mathematical models for soil moisture and the dielectric constant (Ka) for a Hapludalf, two clayey Hapludox and a very clayey Hapludox and test the reliability of universal models, such as those proposed by Topp and Ledieu and their co-workers in the 80's, and specific models to estimate soil moisture with a TDR. Soil samples were collected from the 0 to 0.30 m layer, sieved through a mesh of 0.002 m diameter and packed in PVC cylinders with a 0.1 m diameter and 0.3 m height. Seven samples of each soil class were saturated by capillarity and a probe composed of two rods was inserted in each one of them. Moisture readings began with the saturated soil and concluded when the soil was near permanent wilting point. In each step, the samples were weighed on a precision scale to calculate volumetric moisture. Linear and polynomial models were adjusted for each soil class and for all soils together between soil moisture and the dielectric constant. Accuracy of the models was evaluated by the coefficient of determination, the standard error of estimate and the 1:1 line. The models proposed by Topp and Ledieu and their co-workers were not adequate for estimating the moisture in the soil classes studied. The adjusted linear and polynomial models for the entire set of data of the four soil classes did not have sufficient accuracy for estimating soil moisture. The greater the soil clay and Fe oxide content, the greater the dielectric constant of the medium for a given volumetric moisture. The specific models, θ = 0.40283 - 0.04231 Ka + 0.00194 Ka² - 0.000022 Ka³ (Hapludox) θ = 0.01971 + 0.02902 Ka - 0.00086 Ka² + 0.000012 Ka³ (Hapludox -PF), θ = 0.01692 - 0.00507 Ka (Hapludalf) and θ = 0.08471 + 0.01145 Ka (Hapludox-CA), show greater accuracy and reliability for estimating soil moisture in the soil classes studied.
Resumo:
Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW) on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control). At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths). The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI), defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI) (< 0.2 μm) was identified throughout the soil profile. The presence of Na+ in both waters confirmed the role of this ion on pore size distribution and soil moisture (higher water retention).
Resumo:
Laser diffraction (LD) provides detailed analysis of particle size distribution. Its application to testing the stability of soil aggregates can assist studies on the aggregation of soils with contrasting electrochemical properties. The objectives of the present work were: (a) to propose a protocol for using LD to study soil aggregation, (b) to study the aggregation of an Acrisol under the influence of different doses and forms of lime. Samples were collected in 2005 from a Brazilian Acrisol that in 1994 had received 0.0; 2.0; 8.5 and 17.0 Mg ha-1 of lime, left on the soil surface or incorporated. Aggregates from 4.76 to 8.00 mm diameters were studied using the traditional method proposed by Kemper & Chepil (1965), with wet sieving, while aggregates from 1.00 to 2.00 mm were studied using a CILAS® laser diffractometer that distinguishes particles ranging from 0.04 to 2,500.00 μm. LD readings were made after six consecutive pre-treatments, using agitation times, a chemical dispersion agent and ultrasound. Mean Weighted Diameter (MWD) and the Aggregate Stability Index (ASI) calculated, using the traditional method does not discriminate the treatments. However, LD is able to produce detailed data on soil aggregation, resulting in indexes of stability of aggregates that are linearly related to the doses of lime applied (MWD: R² = 0.986 and ASI: R² = 0.876). It may be concluded that electrochemical changes in the Brazilian Acrisol resulting from incorporated lime affect the stability of aggregates, increasing stability with increased doses of lime.
Resumo:
Microbial activity and biochemical properties are important indicators of the impact of organic composting on soil. The objective of this study was to evaluate some indicators of soil microbial and biochemical processes after application of compost (household waste). A Typic Acrustox, sampled at a depth of 10 cm under Cerrado biome vegetation, was evaluated in three treatments: control (soil without organic compost amendment) and soil with two doses of domestic organic compost (10 and 20 g kg-1 soil). The following properties were evaluated: released C (C-CO2): microbial respiration 15 days after incubation; microbial biomass C (MBC); total glucose (TG); metabolic quotient (qCO2); and enzyme activity of β-glucosidase and acid and alkaline phosphatase. The application of household compost, at doses of 10 and 20 g kg-1 Typic Acrustox, resulted in significant gains in microbial activity, organic C and C stock, as evidenced by increased MBC and TG levels. On the other hand, qCO2 decreases indicated greater microbial diversity and more efficient energy use. The addition of compost, particularly the 20 g kg-1 dose, strongly influenced the enzyme β-glucosidase and phosphatase (acid and alkaline). The β-glucosidase activity was significantly increased and acid phosphatase activity increased more than the alkaline. The ratio of β-glucosidase to MBC was greater in the control than in the composted treatments which suggests that there were more enzymes in the control than in the substrate or that the addition of compost induced a great MBC increase.
Resumo:
In a system in which fertilization is recommended, diagnosis of soil K availability and the establishment of critical levels are made difficult by the possibility of a contribution of non-exchangeable forms of K for plant nutrition. Due to its magnitude, this contribution is well diagnosed in long term experiments and in those which compare fertilization systems with positive and negative balances in terms of replacement of the K extracted by plants. The objective of this study was to evaluate K availability in a Hapludalf under fertilization for sixteen years with the addition of K doses. The study was undertaken in an experiment set up in 1991 and carried out until 2007 in the experimental area of the Soil Department of the Federal University of Santa Maria (Universidade Federal de Santa Maria - UFSM), in Santa Maria (RS), Brazil. The soil was a Typic Hapludalf submitted to four doses of K (0, 60, 120 and 180 kg ha-1 K2O) and subdivided in the second year, when 60 kg ha-1 of K2O were reapplied in the subplots in 0, 1, 2 and 3 times. As of the fifth year, the procedure was repeated. Grain yield above ground dry matter and total K content contained in the plant tissue were evaluated. Soil samples were collected, oven dried, ground, passed through a sieve and submitted to exchangeable K analysis by the Mehlich-1 extractor; non-exchangeable K by boiling HNO3 1 mol L-1 and total K by HF digestion. Potassium fertilization guidelines should foresee the establishment of a critical level as of which the recommended dose should accompany crop needs, which coincides with the quantity exported by the grain, without there being the need for the creation of broad ranges of K availability to predict K fertilization. In adopting the K fertilization recommendations proposed in this manner, there will not be K translocation in the soil profile.
Resumo:
Little is currently known about modifications in edaphic characteristics caused by short-rotation eucalyptus and the impacts of these alterations on the sustainability of eucalyptus wood production. This study was carried out to identify theses changes at five sites of eucalyptus plantation in the region of the Rio Doce Valley, state of Minas Gerais, Brazil. Areas with more than three previous eucalyptus cycles, adjacent to pasture land or native forest, were chosen. Soil samples were collected and soil fertility analyzed by routine methods and other fractionation methods in order to measure alterations in the K, Ca and Mg contents as a consequence of eucalyptus cultivation. In the eucalyptus areas, reductions in the exchangeable Ca2+, Mg2+ and K+ contents and pH were observed and increased Al3+ and H + Al contents. Of all nutrients, only P contents (Mehlich-1 P) increased in the eucalyptus areas. The reduction in exchangeable forms and in medium-term soil nutrient pools indicates the need for higher nutrient rates than the currently applied in order to prevent nutritional limitations and soil nutrient exhaustion. After several eucalyptus rotations there was a recovery in the SOM content in comparison to degraded pasture soils, although not to the level of the native forest soil. The positive correlation between effective CEC and medium-term non-exchangeable Ca, Mg and K with SOM emphasizes the need for adequate fertilizer and plant residue management to sustain or even increase forest productivity in future cycles.
Resumo:
Morphologically differentiated Spodosols usually occur in the Coastal Plain of the South of Bahia and North of Espírito Santo. They are found in profiles known as "muçungas", i.e. sandy soils that accumulate water. In these areas, two kinds of Spodosols, different from those in the Restinga area, can be found: Spodosols with E albic horizon (white muçunungas) and without this horizon (black muçunungas). Eight soil profiles with spodic characteristics were collected and described in order to evaluate differences in the formation process of Barreiras and Restinga Spodosols in the South of Bahia. The soil profiles were also characterized chemically, physically and mineralogically. Additionally, texture and chemical analysis, Fe and Al extraction by sodium dithionite-citrate-bicarbonate (DBC), acid ammonium oxalate and sodium pyrophosphate, ammonium oxalate extract optic density (DOox), sulphuric acid attack, and X ray difractometry of the clay fraction were performed. In the Spodosols of the Barreiras area, fragipan was found the spodic layers. Cemented B spodic horizon were observed in the white muçunungas, and granular structure and dark color from the surface in the black muçunungas. There was no fragipan or hard spodic horizon in the Restinga Spodosol. This soil is acid, dystrophic and alic, with sandy texture and high clay percentages in the spodic horizons. The CEC, based on H + Al, is predominantly represented by the organic matter. The most representative components of the mineral phase of the clay fraction are kaolinite and possibly vermiculite traces with interlayered hydroxy. Chemical, physical, morphological and mineralogical differences were observed between the Barreiras and Restinga environments. The black and white muçunungas differ in morphologic and chemical properties only.
Resumo:
Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different compartments. The aim of this study was to evaluate the effect of different management systems on the labile and stable organic matter of a dystrophic Red Latosol (Oxisol). The following properties were determined: total organic C and total N (TOC and TN), particulate organic C and particulate N (POC and PN), organic C and N mineral-associated (MOC and NM) and particulate organic C associated with aggregate classes (POCA). Eight treatments were used: seven with soil management systems and one with native Cerrado as a reference. The experiment was designed to study the dynamics of systems of tillage and crop rotation, alternating in time and space. The experimental design was a randomized block design with three replications. The soil samples were collected from five depths: 0-5, 5-10, 10-20, 20-30 and 30-40 cm. Changes in organic C by land use occurred mainly in the fraction of particulate organic matter (> 53 mm). Proper management of grazing promoted increased levels of particulate organic matter by association with larger aggregates (2-8 mm), demonstrating the importance of the formation of this aggregate class for C protection in pasture.
Resumo:
The most advanced stage of water erosion, the gully, represents severe problems in different contexts, both in rural and urban environments. In the search for a stabilization of the process in a viable manner it is of utmost importance to assess the efficiency of evaluation methodologies. For this purpose, the efficiency of low-cost conservation practices were tested for the reduction of soil and nutrient losses caused by erosion from gullies in Pinheiral, state of Rio de Janeiro. The following areas were studied: gully recovered by means of physical and biological strategies; gullies in recovering stage, by means of physical strategies only, and gullies under no restoration treatment. During the summer of 2005/2006, the following data sets were collected for this study: soil classification of each of the eroded gully areas; planimetric and altimetric survey; determination of rain erosivity indexes; determination of amount of soil sediment; sediment grain size characteristics; natural amounts of nutrients Ca, Mg, K and P, as well as total C and N concentrations. The results for the three first measurements were 52.5, 20.5, and 29.0 Mg in the sediments from the gully without intervention, and of 1.0, 1.7 and 1.8 Mg from the gully with physical interventions, indicating an average reduction of 95 %. The fully recovered gully produced no sediment during the period. The data of total nutrient loss from the three gullies under investigation showed reductions of 98 % for the recovering gully, and 99 % for the fully recovered one. As for the loss of nutrients, the data indicate a nutrient loss of 1,811 kg from for the non-treated gully. The use of physical and biological interventions made it possible to reduce overall nutrient loss by more than 96 %, over the entire rainy season, as compared to the non-treated gully. Results show that the methods used were effective in reducing soil and nutrient losses from gullies.
Resumo:
Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS) can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively), in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.
Resumo:
Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.
Resumo:
Arsenic has been considered the most poisonous inorganic soil pollutant to living creatures. For this reason, the interest in phytoremediation species has been increasing in the last years. Particularly for the State of Minas Gerais, where areas of former mining activities are prone to the occurrence of acid drainage, the demand is great for suitable species to be used in the revegetation and "cleaning" of As-polluted areas. This study was carried out to evaluate the potential of seedlings of Eucalyptus grandis (Hill) Maiden and E. cloeziana F. Muell, for phytoremediation of As-polluted soils. Soil samples were incubated for a period of 15 days with different As (Na2HAsO4) doses (0, 50, 100, 200, and 400 mg dm-3). After 30 days of exposure the basal leaves of E. cloeziana plants exhibited purple spots with interveinal chlorosis, followed by necrosis and death of the apical bud at the 400 mg dm-3 dose. Increasing As doses in the soil reduced root and shoot dry matter, plant height and diameter in both species, although the reduction was more pronounced in E. cloeziana plants. In both species, As concentrations were highest in the root system; the highest root concentration was found in E. cloeziana plants (305.7 mg kg-1) resulting from a dose of 400 mg dm-3. The highest As accumulation was observed in E. grandis plants, which was confirmed as a species with potential for As phytoextraction, tending to accumulate As in the root system and stem.
Resumo:
The contribution of humic substances of different composts to the synthesis of humin in a tropical soil was evaluated. Increasing doses (0, 13, 26, 52, and 104 Mg ha-1) of five different composts consisting of agroinpowderrial residues were applied to a Red-Yellow Latosol. These composts were chemically characterized and 13C NMR determined and the quantity of the functional alkyl groups of humic acids applied to the soil as compost was estimated. Thirty days after application of the treatments, organic matter samples were collected for fractionation of humic acids (HA), fulvic acids (FA) and humin (HU), from which the ratios HA/FA and (HA + FA)/HU were calculated. The application of the composts based on castor cake resulted in the highest HU levels in the soil; alkyl groups of the HA fraction of the composts were predominant in the organic components added to the HU soil fraction.