227 resultados para microbial diversity
Resumo:
Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081). The inbreeding values within ( = -0.555) and among populations ( =-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.
Resumo:
The purpose of this research was to study the genetic diversity and genetic relatedness of 60 genotypes of grapevines derived from the Germplasm Bank of Embrapa Semiárido, Juazeiro, BA, Brazil. Seven previously characterized microsatellite markers were used: VVS2, VVMD5, VVMD7, VVMD27, VVMD3, ssrVrZAG79 and ssrVrZAG62. The expected heterozygosity (He) and polymorphic information content (PIC) were calculated, and the cluster analysis were processed to generate a dendrogram using the algorithm UPGMA. The He ranged from 81.8% to 88.1%, with a mean of 84.8%. The loci VrZAG79 and VVMD7 were the most informative, with a PIC of 87 and 86%, respectively, while VrZAG62 was the least informative, with a PIC value of 80%. Cluster analysis by UPGMA method allowed separation of the genotypes according to their genealogy and identification of possible parentage for the cultivars 'Dominga', 'Isaura', 'CG 26916', 'CG28467' and 'Roni Redi'.
Resumo:
ABSTRACT The aim of this study was to evaluate the genetic diversity and structure in the germoplasm of Oenocarpus mapora conserved at Eastern Amazon. Thus, 88 individuals were genotyped with five microsatellite loci. These individuals belong to 24 accessions that were sampled in eight sample places of three Brazilian Amazon states conserved at the Active Germplasm Bank (AGB) of Embrapa Eastern Amazon. All loci were polymorphic and they generated 85 alleles with an average of 17 alleles per loci. Total genetic diversity (HE) was 0.48. Sample places were considered genetically distinct, with ?p = 0.354. The analysis of molecular variance (AMOVA) identified that the genetic portion among areas was of 36.14% and within 63.86%. The Nei distances varied from 0.091 between Abaetetuba and Santo Antônio do Tauá, both in the state of Pará (PA), to 4.18, between Parintins, AM and Rio Branco, AC. By means of Bayesian analysis, it was identified nine clusters that compose the accessions of the germplasm bank, with different distributions among individuals. The study showed high fixation rates per sample area, which indicates that there may have been significant inbreeding or crossing among parental individuals. It suggests that future samples should be made of different plants in natural populations. Even though, it was verified that there is considerable genetic variation in the germplasm of O. mapora.
Resumo:
Chemically synthesized surfactants are widely used for many purposes in almost every sector of modern industry. Surface-active compounds of biological origin (biosurfactants) have been gaining attention in recent years because of some advantages such as biodegradability, low toxicity, diversity of applications and functionality under extreme conditions. Microbial biosurfactants are useful in bioremediation of water and soil, enhanced oil recovery, and in many formulations of petrochemical, chemical, pharmaceutical, food, cosmetic and textile industries. The importance of biosurfactants, their characteristics and industrial applications are discussed.
Resumo:
The chemistry of natural products has been remarkably growing in the past few decades in Brazil. Aspects related to the isolation and identification of new natural products, as well as their biological activities, have been achieved in different laboratories working on this subject in the country. More recently, the introduction of new molecular biology tools has strongly influenced the research on natural products, mainly those produced by microorganisms, creating new possibilities to assess the chemical diversity of secondary metabolites. This paper describes some ideas on how the research on natural products can have a considerable input from molecular biology in the generation of chemical diversity. We also explore the role of microbial natural products in mediating interspecific interactions and their relevance to ecological studies. Examples of the generation of chemical diversity are highlighted by using genome mining, mutasynthesis, combinatorial biosynthesis, metagenomics, and synthetic biology, while some aspects of microbial ecology are also discussed. The idea to bring up this topic is linked to the remarkable development of molecular biology techniques to generate useful chemicals from different organisms. Here, we focus mainly on microorganisms, even though similar approaches have also been applied to the study of plants and other organisms. Investigations in the frontier of chemistry and biology require interactions between different areas, characterizing the interdisciplinarity of this research field. The necessity of a real integration of chemistry and biology is pivotal to finding correct answers to a number of biological phenomena. The use of molecular biology tools to generate chemical diversity and control biosynthetic pathways is largely explored in the production of important biologically active compounds. Finally, we briefly comment on the Brazilian organization of research in this area, the necessity of new strategies for the graduation programs, and the establishment of networks as a way of organization to overcome some of the problems faced in the area of natural products.
Resumo:
The fungus Stemphylium solani causes leaf blight of tomato (Lycopersicon esculentum) in Brazil. In recent years, severe epidemics of a new leaf blight of cotton (Gossipium hyrsutum) caused by S. solani occurred in three major cotton-growing Brazilian states (PR, MT and GO). Molecular analysis was performed to assess the genetic diversity among the S. solani isolates from cotton, and to verify their relationship with representative S. solani isolates from tomato. Random amplified polymorphic DNA (RAPD) markers and internal transcribed spacers of ribosomal DNA (rDNA) were used to compare 33 monosporic isolates of S. solani (28 from cotton and five from tomato). An isolate of Alternaria macrospora from cotton was also used for comparison. RAPD analysis showed the presence of polymorphism between the genera and the species. The A. macrospora and the S. solani isolates from cotton and tomato were distinct from each other, and fell into separate groups. Variation by geographic region was observed for the tomato isolates but not for the cotton isolates. Amplifications of the ITS region using the primer pair ITS4/ITS5 resulted in a single PCR product of approximately 600 bp for all the isolates. Similarly, when amplified fragments were digested with eight restriction enzymes, identical banding patterns were observed for all the isolates. Hence, rDNA analysis revealed no inter-generic or intra-specific variation. The genetic difference observed between the cotton and the tomato isolates provides evidence that S. solani attacking cotton in Brazil belongs to a distinct genotype.
Resumo:
Sclerotinia sclerotiorum, the causal agent of white mold, is a problem of winter bean (Phaseolus vulgaris) production in Brazil under center-pivot irrigation. Isolates of S. sclerotiorum were obtained from a center-pivot-irrigated field near Guaíra-SP, Brazil. Mycelial compatibility group (MCG) studies revealed the presence of only two MCG. PCR/RFLP analysis of the ITS1-5.8S-ITS2 ribosomal subunit regions of these field isolates of S. sclerotiorum failed to show any genetic differences between these two MCGs. DNA amplification with a chromosomal telomere sequence-based primer and one microsatellite primer revealed genetic polymorphisms among isolates within the same MCG. Isolates taken from beans and two other crops from another region of Brazil showed the same two MCG and had identical banding patterns for the telomere and microsatellite primers. These findings support the use of telomere sequence-based primers for revealing genotypic differences among S. sclerotiorum isolates.
Resumo:
The genetic diversity of begomovirus isolates from tomato (Lycopersicon esculentum) fields in the Southeastern region of Brazil was analyzed by direct sequencing of PCR fragments amplified by using universal oligonucleotides for the begomovirus DNA-A, and subsequent computer-aided phylogenetic analysis. Samples of tomato plants and associated weeds showing typical symptoms of virus infection were collected at seven locations in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. A total of 137 out of 369 samples were infected with a begomovirus based on PCR analysis. Phylogenetic analysis indicated a high degree of genetic diversity among begomoviruses infecting tomatoes in the sampled area. One species (Tomato chlorotic mottle virus, TCMV) occurs predominantly in Minas Gerais, whereas in Rio de Janeiro and Espírito Santo a distinct species, not yet fully characterized, predominates. Phylogenetic analysis further indicates the presence of an additional four possible new species. This high degree of genetic diversity suggests a recent transfer of indigenous begomovirus from wild hosts into tomatoes. The close phylogenetic relationship verified between begomovirus infecting tomato and associated weeds favors this hypothesis.
Resumo:
A study was undertaken to examine the pathogenic diversity of Pyricularia grisea isolates retrieved from 14 upland rice (Oryza sativa) cultivars in experimental plots during a period of five years. Inoculations were performed on 32 genotypes with 85 monoconidial isolates under controlled greenhouse conditions. Based on the reaction pattern of eight international differentials, eleven pathotypes of P. grisea were identified. The predominant international races or pathotypes were IB-9 (56.4%), IB-1 (16.4%) and IB-41 (11.8%). A set of eight commercial upland rice cultivars ('Carajás', 'Confiança', 'Maravilha', 'Primavera', 'Progresso', 'Caiapó', 'IAC-47', 'IAC-201') was utilized as additional differentials for describing the virulence pattern of P. grisea. Twenty-six Brazilian pathotypes were identified on the basis of disease reaction on these differentials, in contrast to the 11 international pathotypes. The most predominant Brazilian pathotypes, BB-21 and BB-41 were represented by 28.2% and 17.6% of the isolates tested, respectively. Isolates virulent and avirulent to cultivar 'Primavera' were encountered within the pathotype IB-1. Utilizing Brazilian cultivars as differentials, the 14 isolates of the pathotype IB-1could be further classified into eight local pathotypes, BB-41, BB-13, BB-21, BB-9, BB-29, BB-61, BD-9 and BG-1. Virulence to improved rice cultivars 'Canastra', 'Confiança', 'Carisma', 'Maravilha', 'Primavera' and 'Bonança' was frequent in pathogen population. Some of the Brazilian pathotypes that showed differential reaction on commercial rice cultivars could be utilized for incorporating resistance genes in susceptible cultivars improved for grain quality, by conventional breeding methods.
Resumo:
Macrophomina phaseolina has been considered one of the most prevalent soybean (Glycine max) pathogens in Brazil. No genetic resistance has been determined in soybean and very little is known about the genetic diversity of this pathogen in tropical and sub-tropical regions. Fifty-five isolates from soybean roots were collected in different regions and analyzed through RAPD for genetic diversity. The UPGMA cluster analysis for 74 loci scored permitted identification of three divergent groups with an average similarity of 99%, 92% and 88%, respectively. The three groups corresponded to 5.45%, 59.95% and 34.6%, respectively of all isolates used. A single plant had three different haplotypes, while 10.9% of the analyzed plants had two different haplotypes. In another study the genetic similarity was evaluated among isolates from different hosts [soybean, sorghum (Sorghum bicolor), sunflower (Helianthus annuus), cowpea (Vigna unguiculata), corn (Zea mays) and wheat (Triticum aestivum)] as well as two soil samples from native areas. Results showed that more divergent isolates originated from areas with a single crop. Isolates from areas with crop rotation were less divergent, showing high similarity values and consequently formed the largest group. Amplification of the ITS region using primers ITS1 and ITS4 produced only one DNA fragment of 620 bp. None of the isolates were differentiated through PCR-RFLP. Our results demonstrated genetic variability among Brazilian isolates of M. phaseolina and showed that one single root can harbor more than one haplotype. Moreover, cultivation with crop rotation tends to induce less specialization of the pathogen isolates. Knowledge of this variation may be useful in screening soybean genotypes for resistance to charcoal rot.
Resumo:
Seventy-two monoconidial isolates of Magnaporthe grisea were obtained from the States of Mato Grosso do Sul and Paraná. The isolates were inoculated on seedlings of 20 wheat (Triticum aestivum) cultivars under greenhouse conditions. The virulence diversity of M. grisea was assessed based on compatible and incompatible reactions of leaf blast on wheat cultivars. Fifty-four distinct virulence patterns were identified on test cultivars among the isolates collected from the two wheat growing States. Sixteen of these isolates corresponding to 22.2% showed similar virulence pattern. None of the wheat cultivars was resistant to all isolates of M. grisea, but the cultivars differed in degree of resistance as measured by the relative spectrum of resistance (RSR) and disease index (DI). Among the cultivars the RSR ranged from 0 to 53.3% and DI from 0.4662 to 0.9662 (0 to 1 scale). The wheat cultivar BR18 exhibited a broad resistance spectrum in relation to the rest of the tested cultivars to the isolates of M. grisea, and can be used in wheat resistance breeding.
Resumo:
The subtropical Northwestern region of Argentina (provinces of Tucumán, Salta, Jujuy, Santiago del Estero and Catamarca) suffers from a high incidence of the whitefly Bemisia tabaci, and the detection of begomoviruses is also common. The Northwest is the main bean-growing region of the country, and approximately 10% of Argentina's soybean crop is grown in this area. We have used a PCR-based assay to establish the identity and genetic diversity of begomoviruses associated with bean and soybean crops in Northwestern Argentina. Universal begomovirus primers were used to direct the amplification of a fragment encompassing the 5' portion of the capsid protein gene. Amplified fragments were cloned, sequenced and subjected to phylogenetic analysis to determine the sequence identity to known begomoviruses. The data indicated the presence of four distinct begomoviruses, all related to other New World begomoviruses. The prevalent virus, which was present in 94% of bean and soybean samples and also in two weed species, is closely related to Sida mottle virus (SiMoV). A virus with high sequence identity with Bean golden mosaic virus (BGMV) was found in beans. The two remaining viruses displayed less than 89% identity with other known begomoviruses, indicating that they may constitute novel species. One of these putative novel viruses was detected in bean, soybean and tomato samples.
Resumo:
Southern blight (Sclerotium rolfsii) of soybean (Glycine max) is an important disease throughout the world. Some soil amendments can reduce disease levels by improving soil microbial activity. The main goals of this study were to investigate the effects of soil amendments such as dried powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine bark (Pinus taeda), on soil microbial population and disease caused by S. rolfsii on soybean. Pine bark, velvetbean (mucuna) and kudzu (25 g kg-1) added to soil were effective in reducing disease incidence [non-amended (NA) ~ 39%; amended (A) ~ 2 to 11%)]. Bacillus megaterium was the bacteria most frequently isolated in soils with velvetbean or kudzu (NA ~ log 5.7 CFU g-1 of dried soil; A ~ log 6.2). Soils with velvetbean and kudzu stimulated increase in population of Enterobacter aerogenes (NA ~ log 3; A ~ log 5.1-5.8). Pseudomonas putida population was higher in A than in NA (NA ~ log 4; A ~ log 5.5), and was negatively correlated (r = -0.83, P = 1%) to disease incidence. Soil amended with kudzu and pine bark stimulated increases in populations of Trichoderma koningii (NA ~ log 1.6; A ~ log 2.9) and Penicillium citreonigrum (NA ~ log 1.3; A ~ log 2.6), respectively. Penicillium herquei soil population increased with addition of kudzu (NA ~ log 1.2; A, ~ log 2.5). These microorganisms are antagonists of soil-borne pathogens. Powders of velvetbean, kudzu, and pine bark can increase antagonistic population in soil and reduce disease.
Resumo:
The phenotypic diversity of Magnaporthe grisea was evaluated based on leaf samples with blast lesions collected from eight commercial fields of the upland rice cultivars 'BRS Primavera' and 'BRS Bonança', during the growing seasons of 2001/2002 and 2002/2003, in Goias State. The number of M. grisea isolates from each field utilized for virulence testing varied from 28 to 47. Three different indices were used based on reaction type in the eight standard international differentials and eight Brazilian differentials. The M. grisea subpopulations of ´Primavera' and 'Bonança', as measured by Simpson, Shannon and Gleason indices, showed similar phenotypic diversities. The Simpson index was more sensitive relation than those of Shannon and Gleason for pathotype number and standard deviation utilizing Brazilian differentials. However, the Gleason index was sensitive to standard deviation for international differentials. The sample size did not significantly influence the diversity index. The two sets of differential cultivars used in this study distinguished phenotypic diversity in different ways in all of the eight subpopulations analyzed. The phenotypic diversity determined based on eight differential Brazilian cultivars was lower in commercial rice fields of 'Primavera' than in the fields of 'Bonança,' independent of the diversity index utilized, year and location. Considering the Brazilian differentials, the four subpopulations of 'BRS Primavera' did not show evenness in distribution and only one pathotype dominated in the populations. The even distribution of pathotype was observed in three subpopulations of 'BRS Bonança'. The pathotype diversity of M. grisea was determined with more precision using Brazilian differentials and Simpson index.
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.