280 resultados para física atómica
Resumo:
The purpose of this paper is the development of simple strategies to teach basic concepts of atomic spectrometry. Metals present in samples found in the daily lives of students are determined by flame atomic emission spectrometry (FAES). FAES is an accurate, precise, and inexpensive analytical method often used for determining sodium, potassium, lithium, and calcium. Historical aspects and their contextualization for students are also presented and experiments with samples that do not require pre-treatment are described.
Resumo:
Thermospray flame furnace Atomic Absorption Spectrometry (TS-FF-AAS) was used for the total determination of Cd, Pb and Zn in fresh water and seawater samples at µg L-1 levels, and in marine sediment samples at µg g-1 levels. Using a sample loop of 50 µL and a peristaltic pump the samples were transported into the metallic tube placed over an air/acetylene flame, through a ceramic capillary (o.d. = 3.2 mm) containing two parallel internal orifices (i.d = 0.5 mm). The detection limits determined for Cd, Pb and Zn using a synthetic water matrix (2.5% m/v NaCl, 0.5% m/v MgCl2 and 0.8% m/v CaCl2) were 0.32 µg L-1; 2.6 µg L-1 and 0.21 µg L-1 respectively. The methodology by TS-FF-AAS was validated by determination of Cd, Pb and Zn in certified reference materials of water and marine sediment, and the t-test for differences between means was applied. No statistically significant differences were established in fresh water and seawater (p>0.05), whereas differences became apparent in marine sediment (p<0.03).
Resumo:
The use of an internal standard (IS) in ET AAS can be considered a new trend after the commercial introduction of a simultaneous spectrometer. The evaluation of experimental data to choose the most appropriate IS can be done by comparing correlation graphs. They were used to verify the resemblance among the simultaneous measurements obtained for the analyte(s) and the IS by inductively coupled plasma optical emission spectrometry (ICPOES). The judicious selection of IS by using correlation graphs for determinations by ET AAS can be exploited to improve the precision and accuracy of the analytical results. Therefore, a new approach for studying the use of IS in ET AAS is presented.
Resumo:
Affinity reactions have been used for specific detection of their complementary partners and an enormous variety of enzyme-linked immunosorbent assay (ELISA) formats are used in research and in routine serological tests. With the advent of the atomic force microscopy (AFM) technique, the immune reactions have been monitored by these devices. In the present article we focus on applications of AFM to immunoassays. After introducing the basic concepts of AFM, a brief discussion on the monitoring of the interactions between antigens and antibodies through both topographic image and biosensor systems is presented.
Resumo:
This work describes a systematic study for bovine liver sample preparation for Cd and Pb determination by solid sampling electrothermal atomic absorption spectrometry. Samples were prepared using different procedures: (1) drying in a household microwave oven followed by drying in a stove at 60 ºC until constant mass, and (2) freeze-drying. Ball and cryogenic mills were used for grinding. Particle size, sample size and micro sample homogeneity were investigated. All prepared samples showed good homogeneity (He < 10) even for low sample mass, but samples dried in a microwave oven/stove and ground in a ball mill presented the best homogeneity.
Resumo:
Simple experiments are proposed for measuring molecular absorption of chromate and dichromate ions using an atomic absorption spectrometer. The experiments can help undergraduate students in instrumental analysis courses understand important aspects involving conceptual and instrumental similarities and differences between frequently used analytical techniques. Hollow cathode lamps were selected with wavelengths in the region of molecular absorption of chromate and dichromate. Calibration curves were obtained and the linear dynamic range was evaluated. Results were compared with those obtained in a molecular absorption spectrometer. The molar absorptivities obtained were also compared.
Resumo:
Polarizability correlates well with organic ion stabilization in solution and can be defined as a measure of the relative ease of the distortion of the electronic cloud of a dipolar system exposed to an external electric field. The effective atomic polarizability, alphad, has a fundamental influence on chemical reactivity in the gas phase and in solution. In terms of chemical reactivity the charge is generated within the molecule as a positive charge due to protonation, ionization or resulting from the attack of a nucleophilic anion. In this paper, lipoidal diaminedithiol (DADT) perfusion radioligands based on 99Tc m and possessing an alkylamine side chain have been used to check the influence of alphad on their brain uptake. Some new DADT derivatives, respectively DADT-DIPA (diaminedithiol - diisopropylamine), DADT DIBA (diaminedithiol diisobutylamine), DADT-PR (diaminedithiol - branched pyperidine), have been designed to have high nitrogen alkylamine alphad values. In spite of the fact of higher alphad values having been correlated to higher brain uptakes, there isn't a clear mechanism able to trap these radioligands into the brain space.
Resumo:
In this work a simple and sensitive procedure to extract organic mercury from water and sediment samples, using methylene chloride in acidic media followed by CVAFS quantification has been developed. The method was evaluated for possible interferents, using different inorganic mercury species and humic acid, no effects being observed. The detection limit for organic mercury was 160 pg and 396 pg for water and sediment samples respectively. The accuracy of the method was evaluated using a certified reference material of methylmercury (BCR-580, estuarine sediment). Recovery tests using methylmercury as surrogate spiked with 1.0 up to 30.0 ng L-1 ranged from 90 up to 109% for water samples, whereas for sediments, recoveries ranged from 57 up to 97%.
Resumo:
The production and use of nitroaromatic explosives have resulted in their dissemination into the environment, where their presence in waterways and soil represents an ecological and health hazard. The hazardous characteristics of these compounds need to be carefully studied, so that the impact of their discharge on the environment can be better evaluated. This work presents the characterization of wastewater from Brazilian TNT industry using as analytical techniques mass spectroscopy, chromatography, toxicity assays and other physico-chemical analyses.
Resumo:
The Balmer equation is obtained from the hydrogen spectrum in an empirical way, using a graphic method; from this equation the energy level terms are derived. Emphasis is given to concepts in order to make clear the meaning of quantum numbers, eigenvalues and eigenfunctions in the Schrödinger equation.
Resumo:
The present article is devoted to Chemistry or Physics undergraduate students, given their difficulty to understand fundamental concepts and technical language used in atomic spectroscopy and quantum mechanics. An easy approach is shown in the treatment of the emission spectrum of the sodium atom without any involved calculations. In a previous article, the hydrogen spectrum was considered and the energy degeneracy of the angular momentum quantum number was observed. For the sodium spectrum, due to the valence electron penetration into internal shells, a breakdown of this degeneracy occurs and a dependence of this penetration on the angular momentum quantum number is observed. The eigenvalues are determined introducing the quantum defect correction (Rydberg correction) in the denominator of the Balmer equation, and the energy diagram is obtained. The intensity ratio for the observed doublets is explained by introducing new wave functions, containing the magnetic quantum number of the total angular momentum.
Resumo:
The study evaluated the efficiency of chemical (phosphorylation) and physical (extrusion) modifications of the starch of broken rice. Results demonstrated a reduction in the moisture content of extruded and phosphorylated broken rice and an increase in the ash content of phosphorylated broken rice. Both phosphorylation and extrusion increased cold water binding capacity, swelling power, and solubility. Extruded and phosphorylated pastes were stable under refrigeration, but only extruded paste was stable when submitted to freezing. Phosphorylated paste had the lowest viscosity and the highest stability during heating, while the extruded one gelatinized without heating, but had higher losses during heating.
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.
Resumo:
This paper reports the development of a methodology for simultaneously determining As, Cd and Pb, employing GF AAS with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of pyrolysis and atomization temperatures and the amount of chemical modifiers were studied. Factorial and central composite designs were used to optimize these variables. Precision and accuracy of the method were investigated using Natural Water Reference material, Nist SRM 1640. Results are in agreement with certified values at the 95% confidence limit when the Student t-test is used. This methodology was used for quality control of purified water for hemodialysis.
Resumo:
Polymeric materials are widely used in the chemical industry and are part of our daily lives. Inorganic species may be added to them as additives, anti-oxidizing agents, stabilizers, plasticizers, colorants and catalysts and may be present in a wide range of concentrations. Their determination demands the development of analytical methods considering different kinds of polymeric materials, their composition and the final use of the material. Although many different analytical techniques may be used, this review emphasizes those based on atomic absorption and emission spectrometry. Solid sampling techniques and digestion methods are described and discussed and compared considering published results.