200 resultados para VASOACTIVE INTESTINAL POLYPEPTIDE
Resumo:
The excretion ratio of lactulose/mannitol in urine has been used to assess the extension of malabsorption and impairment of intestinal permeability. The recovery of lactulose and mannitol in urine was employed to evaluate intestinal permeability in children with and without diarrhea. Lactulose and mannitol probes were measured using high-performance liquid chromatography with pulsed amperometric detection (HPLC-PAD). Two groups of solutions containing 60 µM sugars were prepared. Group I consisted of glucosamine, mannitol, melibiose and lactulose, and group II of inositol, sorbitol, glucose and lactose. In the study of intra-experiment variation, a sample of 50 µl from each group was submitted to 4 successive determinations. The recovered amounts and retention times of each sugar showed a variation <2 and 1%, respectively. The estimated recovery was >97%. In the study of inter-experiment variation, we prepared 4 independent samples from groups I and II at the following concentrations: 1.0, 0.3, 0.1, 0.03 and 0.01 mM. The amounts of the sugars recovered varied by <10%, whereas the retention times showed an average variation <1%. The linear correlation coefficients were >99%. Retention (k'), selectivity (a) and efficiency (N) were used to assess the chromatographic conditions. All three parameters were in the normal range. Children with diarrhea presented a greater lactulose/mannitol ratio compared to children without diarrhea.
Resumo:
The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.
Resumo:
The study was performed to investigate possible alterations in oxygen consumption in an animal model with broad intestinal resection. Oxygen consumption and the thermal effect of a short meal were measured in rats subjected to short bowel syndrome. Four groups of rats were used. Group I was the control group, group II was sham operated, group III was submitted to 80% jejunum-ileum resection, and group IV was submitted to 80% jejunum-ileum resection with colon interposition. Ninety days after surgery, oxygen consumption was measured over a period of 6 h with the animals fasted overnight. The thermal effect of feeding was determined in another session of oxygen consumption measurement in animals fasted for 12 h. A 12-kcal meal was then introduced into the animal chamber and oxygen consumption was measured for a further 4 h. No differences in fasting oxygen consumption or in the thermal effect of the meal were detected among the groups studied. It is concluded that short bowel syndrome does not affect the overall energy expenditure of rats.
Resumo:
The objective of the present study was to assess intestinal permeability in patients with infection caused by Strongyloides stercoralis. Twenty-six patients (16 women and 10 men), mean age 45.9, with a diagnosis of strongyloidiasis were evaluated. For comparison, 25 healthy volunteers (18 women and 7 men), mean age 44.9, without digestive disorders or intestinal parasites served as normal controls. Intestinal permeability was measured on the basis of urinary radioactivity levels during the 24 h following oral administration of chromium-labeled ethylenediaminetetraacetic acid (51Cr-EDTA) expressed as percentage of the ingested dose. The urinary excretion of 51Cr-EDTA was significantly reduced in patients with strongyloidiasis compared to controls (1.60 ± 0.74 and 3.10 ± 1.40, respectively, P = 0.0001). Intestinal permeability is diminished in strongyloidiasis. Abnormalities in mucus secretion and intestinal motility and loss of macromolecules could explain the impaired intestinal permeability.
Resumo:
Despite its ancient use as a therapeutic tool to treat several ailments, acupuncture still faces the challenge of scrutiny by Western science both in terms of its efficacy and in terms of the characterization of its effects and mechanisms of actions underlying these effects. We investigated under well-controlled and carefully characterized conditions the influence of electrical stimulation of acupuncture points ST-36 (Zusanli) and SP-6 (Sanyinjiao) on the myoelectric activity of the small intestine of 38 adult male Wistar rats. Electrical recordings obtained by means of four electrodes chronically implanted in the small intestine were used to assess the effects of acupuncture (electroacupuncture stimulation set at 2 Hz, intermittent stimulation, 1 V, for 30 min). Immobilization of the animals was associated with a consistent decrease (-8 ± 7%) in the myoelectric activity of the small intestine as measured by means of the root mean square. Conversely, acupuncture was able to significantly increase (overshoot) this activity compared to baseline (+44 ± 7%). In contrast, immobilized animals subjected to sham acupuncture had only modest (nonsignificant) increases in myoelectric activity (+9 ± 6%). Using carefully controlled conditions we confirmed previous noncontrolled studies on the ability of acupuncture to alter intestinal motility. The characterization of the topographic and temporal profiles of the effects observed here represents a basis for future dissection of the physiological and pharmacological systems underlying these effects.
Resumo:
The goal of the present research was to elucidate the roles and mechanisms by which the sensory nervous system, through the actions of potent vasodilator neuropeptides, regulates cardiovascular function in both the normal state and in the pathophysiology of hypertension. The animal models of acquired hypertension studied were deoxycorticosterone-salt (DOC-salt), subtotal nephrectomy-salt (SN-salt), and Nomega-nitro-L-arginine methyl ester (L-NAME)-induced hypertension during pregnancy in rats. The genetic model was the spontaneously hypertensive rat (SHR). Calcitonin gene-related peptide (CGRP) and substance P (SP) are potent vasodilating neuropeptides. In the acquired models of hypertension, CGRP and SP play compensatory roles to buffer the blood pressure (BP) increase. Their synthesis and release are increased in the DOC-salt model but not in the SN-salt model. This suggests that the mechanism by which both models lower BP in SN-salt rats is by increased vascular sensitivity. CGRP functions in a similar manner in the L-NAME model. In the SHR, synthesis of CGRP and SP is decreased. This could contribute to the BP elevation in this model. The CGRP gene knockout mouse has increased baseline mean arterial pressure. The long-term synthesis and release of CGRP is increased by nerve growth factor, bradykinin, and prostaglandins and is decreased by alpha2-adrenoreceptor agonists and glucocorticoids. In several animal models, sensory nervous system vasoactive peptides play a role in chronic BP elevation. In the acquired models, they play a compensatory role. In the genetic model, their decreased levels may contribute to the elevated BP. The roles of CGRP and SP in human hypertension are yet to be clarified.
Resumo:
The objective of the present study was to investigate the effects of recombinant human growth hormone (rhGH) on the intestinal mucosa barrier of septic rats and explore its possible mechanism. Female Sprague-Dawley rats were randomized into three groups: control, Escherichia coli-induced sepsis (S) and treatment (T) groups. Groups S and T were subdivided into subgroups 1d and 3d, respectively. Expression of liver insulin-like growth factor-1 (IGF-1) mRNA, Bcl-2 and Bax protein levels and the intestinal Bax/Bcl-2 ratio, and plasma GH and IGF-1 levels were determined. Histological examination of the intestine was performed and bacterial translocation was determined. rhGH significantly attenuated intestinal mucosal injuries and bacterial translocation in septic rats, markedly decreased Bax protein levels, inhibited the decrease of Bcl-2 protein expression and maintained the Bax/Bcl-2 ratio in the intestine. rhGH given after sepsis significantly improved levels of plasma GH (T1d: 1.28 ± 0.24; T3d: 2.14 ± 0.48 µg/L vs S1d: 0.74 ± 0.12; S3d: 0.60 ± 0.18 µg/L; P < 0.05) and IGF-1 (T1d: 168.94 ± 65.67; T3d: 201.56 ± 64.98 µg/L vs S1d: 116.72 ± 13.96; S3d: 107.50 ± 23.53 µg/L; P < 0.05) and expression of liver IGF-1 mRNA (T1d: 0.98 ± 0.20; T3d: 1.76 ± 0.17 vs S1d: 0.38 ± 0.09; S3d: 0.46 ± 0.10; P < 0.05). These findings indicate that treatment with rhGH had beneficial effects on the maintenance of the integrity of the intestinal mucosa barrier in septic rats.
Resumo:
Sildenafil slows down the gastric emptying of a liquid test meal in awake rats and inhibits the contractility of intestinal tissue strips. We studied the acute effects of sildenafil on in vivo intestinal transit in rats. Fasted, male albino rats (180-220 g, N = 44) were treated (0.2 mL, iv) with sildenafil (4 mg/kg) or vehicle (0.01 N HCl). Ten minutes later they were fed a liquid test meal (99m technetium-labeled saline) injected directly into the duodenum. Twenty, 30 or 40 min after feeding, the rats were killed and transit throughout the gastrointestinal tract was evaluated by progression of the radiotracer using the geometric center method. The effect of sildenafil on mean arterial pressure (MAP) was monitored in a separate group of rats (N = 14). Data (medians within interquartile ranges) were compared by the Mann-Whitney U-test. The location of the geometric center was significantly more distal in vehicle-treated than in sildenafil-treated rats at 20, 30, and 40 min after test meal instillation (3.3 (3.0-3.6) vs 2.9 (2.7-3.1); 3.8 (3.4-4.0) vs 2.9 (2.5-3.1), and 4.3 (3.9-4.5) vs 3.4 (3.2-3.7), respectively; P < 0.05). MAP was unchanged in vehicle-treated rats but decreased by 25% (P < 0.05) within 10 min after sildenafil injection. In conclusion, besides transiently decreasing MAP, sildenafil delays the intestinal transit of a liquid test meal in awake rats.
Resumo:
Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) is an important pest for Brazilian sugarcane. In the present study, we detected two distinct spots in hemolymph from septic injured larvae (HDs1 and HDs2), which are separated by 2DE gel electrophoresis. Both spots were subjected to in-gel tryptic digestion and MALDI-TOF/TOF analysis, which revealed the sequence VFGTLGSDDSGLFGK present in both HDs1 and HDs2. This sequence had homology and 80% identity with specific Lepidoptera antimicrobial peptides called gloverins. Analyses using the ImageMaster 2D software showed pI 8.94 of the HDs1 spot, which is similar to that described to Hyalophora gloveri gloverin (pI 8.5). Moreover, the 14-kDa molecular mass of the spot HDs1 is compatible to that of gloverins isolated from the hemolymph of Trichoplusia ni, Helicoverpa armigera and H. gloveri. Antimicrobial assays with partially purified fractions containing the HDs1 and HDs2 polypeptides demonstrated activity against Escherichia coli. This is the first report of antimicrobial polypeptides in D. saccharalis, and the identification of these peptides may help in the generation of new strategies to control this pest.
Resumo:
Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures) was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines), allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39) and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV), may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.
Resumo:
Oxygen therapy is essential for the treatment of some neonatal critical care conditions but its extrapulmonary effects have not been adequately investigated. We therefore studied the effects of various oxygen concentrations on intestinal epithelial cell function. In order to assess the effects of hyperoxia on the intestinal immunological barrier, we studied two physiological changes in neonatal rats exposed to hyperoxia: the change in intestinal IgA secretory component (SC, an important component of SIgA) and changes in intestinal epithelial cells. Immunohistochemistry and Western blot were used to detect changes in the intestinal tissue SC of neonatal rats. To detect intestinal epithelial cell growth, cells were counted, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Giemsa staining were used to assess cell survival. Immunohistochemistry was used to determine SC expression. The expression of intestinal SC in neonatal rats under hyperoxic conditions was notably increased compared with rats inhaling room air (P < 0.01). In vitro, 40% O2 was beneficial for cell growth. However, 60% O2 and 90% O2 induced rapid cell death. Also, 40% O2 induced expression of SC by intestinal epithelial cells, whereas 60% O2did not; however, 90% O2 limited the ability of intestinal epithelial cells to express SC. In vivo and in vitro, moderate hyperoxia brought about increases in intestinal SC. This would be expected to bring about an increase in intestinal SIgA. High levels of SC and SIgA would serve to benefit hyperoxia-exposed individuals by helping to maintain optimal conditions in the intestinal tract.
Resumo:
The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.
Resumo:
Intestinal barrier dysfunction plays an important role in spontaneous bacterial peritonitis. In the present study, changes in the intestinal barrier with regard to levels of secretory immunoglobulin A (SIgA) and its components were studied in fulminant hepatic failure (FHF). Immunohistochemistry and double immunofluorescent staining were used to detect intestinal IgA, the secretory component (SC) and SIgA in patients with FHF (20 patients) and in an animal model with FHF (120 mice). Real-time PCR was used to detect intestinal SC mRNA in the animal model with FHF. Intestinal SIgA, IgA, and SC staining in patients with FHF was significantly weaker than in the normal control group (30 patients). Intestinal IgA and SC staining was significantly weaker in the animal model with FHF than in the control groups (normal saline: 30 mice; lipopolysaccharide: 50 mice; D-galactosamine: 50 mice; FHF: 120 mice). SC mRNA of the animal model with FHF at 2, 6, and 9 h after injection was 0.4 ± 0.02, 0.3 ± 0.01, 0.09 ± 0.01, respectively. SC mRNA of the animal model with FHF was significantly decreased compared to the normal saline group (1.0 ± 0.02) and lipopolysaccharide group (0.89 ± 0.01). The decrease in intestinal SIgA and SC induced failure of the intestinal immunologic barrier and the attenuation of gut immunity in the presence of FHF.
Resumo:
This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02vs 0.15 ± 0.02), medial (0.30 ± 0.06vs 0.14 ± 0.01) and distal (0.43 ± 0.07vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.
Resumo:
Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.