183 resultados para Sialic Acid
Resumo:
Trypsin is a serino-protease with a polypeptide chain of 223 amino acid residues and contains six disulfide bridges. It is a globular protein with a predominance of antiparallel ß-sheet and helix in its secondary structure and has two domains with similar structures. We assessed the stability of ß-trypsin in the acid pH range using microcalorimetric (differential scanning calorimetry) techniques. Protein concentrations varied in the range of 0.05 to 2.30 mg/ml. Buffer solutions of 50.0 mM ß-alanine and 20.0 mM CaCl2 at different pH values (from 2.0 to 4.2) and concentrations of sorbitol (1.0 and 2.0 M), urea (0.5 M) or guanidinium hydrochloride (0.5 and 1.0 M) were used. The data suggest that we are studying the same conformational transition of the protein in all experimental situations using pH, sorbitol, urea and guanidinium hydrochloride as perturbing agents. The observed van't Hoff ratios (deltaHcal/deltaHvH) of 1.0 to 0.5 in the pH range of 3.2 to 4.2 suggest protein aggregation. In contrast, deltaHcal/deltaHvH ratios equal to one in the pH range of 2.0 to 3.2 suggest that the protein unfolds as a monomer. At pH 3.00, ß-trypsin unfolded with Tm = 54ºC and deltaH = 101.8 kcal/mol, and the change in heat capacity between the native and unfolded forms of the protein (deltaCp) was estimated to be 2.50 ± 0.07 kcal mol-1 K-1. The stability of ß-trypsin calculated at 298 K was deltaG D = 5.7 kcal/mol at pH 3.00 and deltaG D = 15.2 kcal/mol at pH 7.00, values in the range expected for a small globular protein.
Resumo:
The objective of the present study was to determine the effects of retinoic acid on the growth of the mouse mammary cells HC11 and HC11ras, which are a model for in vitro breast cancer progression. The expression of the two classes (RARs and RXRs) of retinoic acid receptor mRNAs was determined by Northern blot analysis. Receptor functional integrity was determined by testing whether RAR ß mRNA could be induced by retinoic acid. The effects of a 72-h exposure to 50 µM 13-cis retinoic acid on HC11 and HC11ras cell proliferation and HC11 cell differentiation were investigated by flow cytometric cell cycle analysis, and by determination of ß-casein mRNA expression, respectively. The possibility that retinoic acid would induce the expression of the vitamin D receptor and synergize with vitamin D, a known inhibitor of HC11 cell growth, was also investigated. HC11 cells expressed higher mRNA levels of both RAR a and RAR g when compared to HC11ras cells. In contrast, RAR ß, as well as RXR a, ß and g expression was low in both HC11 and HC11ras cells. In addition, RAR ß mRNA was induced by retinoic acid treatment in both cells. In spite of these observations, no effects were seen on cell proliferation or differentiation upon exposure to retinoic acid. Neither vitamin D receptor induction nor synergy with vitamin D on growth inhibition was observed. We conclude that the RAR expression profile could be related to the transformed state in HC11ras cells and that the retinoic acid resistance observed merits further investigation.
Resumo:
We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL)-cholesterol, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.