199 resultados para Secretory Iga


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis C, a worldwide viral infection, is an important health problem in Brazil. The virus causes chronic infection, provoking B lymphocyte dysfunction, as represented by cryoglobulinemia, non-organ-specific autoantibody production, and non-Hodgkin's lymphoma. The aim of this research was to screen for the presence of antiphospholipid autoantibodies in 109 Brazilian hepatitis C virus carriers without clinical history of antiphospholipid syndrome. Forty healthy individuals were used as the control group. IgA, IgG, and IgM antibodies against cardiolipin and β2-glycoprotein I were measured with an enzyme-linked immunosorbent assay, using a cut-off point of either 20 UPL or 20 SBU. While 24 (22.0%) hepatitis C carriers had moderate titers of IgM anticardiolipin antibodies (median, 22.5 MPL; 95%CI: 21.5-25.4 MPL), only three carriers (<3%) had IgG anticardiolipin antibodies (median, 23 GPL; 95%CI: 20.5-25.5 GPL). Furthermore, IgA anticardiolipin antibodies were not detected in these individuals. Male gender and IgM anticardiolipin seropositivity were associated in the hepatitis C group (P = 0.0004). IgA anti-β2-glycoprotein-I antibodies were detected in 29 of 109 (27.0%) hepatitis C carriers (median, 41 SAU; 95%CI: 52.7-103.9 SAU). Twenty patients (18.0%) had IgM anti-β2-glycoprotein I antibodies (median, 27.6 SMU; 95%CI: 23.3-70.3 SMU), while two patients had IgG antibodies against this protein (titers, 33 and 78 SGU). Antiphospholipid antibodies were detected in only one healthy individual, who was seropositive for IgM anticardiolipin. We concluded that Brazilian individuals chronically infected with hepatitis C virus present a significant production of antiphospholipid antibodies, mainly IgA anti-β2-glycoprotein I antibodies, which are not associated with clinical manifestations of antiphospholipid syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asthma is characterized by reversible airway obstruction, airway hyperresponsiveness, and airway inflammation. Although our understanding of its pathophysiological mechanisms continues to evolve, the relative contributions of airway hyperresponsiveness and inflammation are still debated. The first mechanism identified as important for asthma was bronchial hyperresponsiveness. In a second step, asthma was recognized also as an inflammatory disease, with chronic inflammation inducing structural changes or remodeling. However, persistence of airway dysfunction despite inflammatory control is observed in chronic severe asthma of both adults and children. More recently, a potential role for epithelial-mesenchymal communication or transition is emerging, with epithelial injury often resulting in a self-sustaining phenotype of wound repair modulation by activation/reactivation of the epithelial-mesenchymal trophic unit, suggesting that chronic asthma can be more than an inflammatory disease. It is noteworthy that the gene-environmental interactions critical for the development of a full asthma phenotype involve processes similar to those occurring in branching morphogenesis. In addition, a central role for airway smooth muscle in the pathogenesis of the disease has been explored, highlighting its secretory function as well as different intrinsic properties compared to normal subjects. These new concepts can potentially shed light on the mechanisms underlying some asthma phenotypes and improve our understanding of the disease in terms of the therapeutic strategies to be applied. How we understand asthma and its mechanisms along time will be the focus of this overview.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currents mediated by calcium-activated chloride channels (CaCCs), observed for the first time in Xenopus oocytes, have been recorded in many cells and tissues ranging from different types of neurons to epithelial and muscle cells. CaCCs play a role in the regulation of excitability in neurons including sensory receptors. In addition, they are crucial mediators of chloride movements in epithelial cells where their activity regulates electrolyte and fluid transport. The roles of CaCCs, particularly in epithelia, are briefly reviewed with emphasis on their function in secretory epithelia. The recent identification by three independent groups, using different strategies, of TMEM16A as the molecular counterpart of the CaCC is discussed. TMEM16A is part of a family that has 10 other members in mice. The discovery of the potential TMEM16 anion channel activity opens the way for the molecular investigation of the role of these anion channels in specific cells and in organ physiology and pathophysiology. The identification of TMEM16A protein as a CaCC chloride channel molecule represents a great triumph of scientific perseverance and ingenuity. The varied approaches used by the three independent research groups also augur well for the solidity of the discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxoplasma, which infects all eukaryotic cells, is considered to be a good system for the study of drug action and of the behavior of infected host cells. In the present study, we asked if thiosemicarbazone derivatives can be effective against tachyzoites and which morphological and ultrastructural features of host cells and parasites are associated with the destruction of Toxoplasma. The compounds were tested in infected Vero cell culture using concentration screens (0.1 to 20 mM). The final concentration of 1 mM was chosen for biological assay. The following results were obtained: 1) These new derivatives decreased T. gondii infection with an in vitro parasite IC50% of 0.2-0.7 mM, without a significant effect on host cells and the more efficient compounds were 2, 3 (thiosemicarbazone derivatives) and 4 (thiazolidinone derivative); 2) The main feature observed during parasite elimination was continuous morphological disorganization of the tachyzoite secretory system, progressive organelle vesiculation, and then complete disruption; 3) Ultrastructural assays also revealed that progressive vesiculation in the cytoplasm of treated parasites did not occur in the host cell; 4) Vesiculation inside the parasite resulted in death, but this feature occurred asynchronously in different intracellular tachyzoites; 5) The death and elimination of T. gondii was associated with features such as apoptosis-like stage, acidification and digestion of parasites into parasitophorous vacuoles. Our results suggest that these new chemical compounds are promising for the elimination of intracellular parasites by mainly affecting tachyzoite development at 1 mM concentration for 24 h of treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in Bruton's tyrosine kinase (BTK) gene are responsible for X-linked agammaglobulinemia (XLA), which is characterized by recurrent bacterial infections, profound hypogammaglobulinemia, and decreased numbers of mature B cells in peripheral blood. We evaluated 5 male Brazilian patients, ranging from 3 to 10 years of age, from unrelated families, whose diagnosis was based on recurrent infections, markedly reduced levels of IgM, IgG and IgA, and circulating B cell numbers <2%. BTK gene analysis was carried out using PCR-SSCP followed by sequencing. We detected three novel (Ala347fsX55, I355T, and Thr324fsX24) and two previously reported mutations (Q196X and E441X). Flow cytometry revealed a reduced expression of BTK protein in patients and a mosaic pattern of BTK expression was obtained from mothers, indicating that they were XLA carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rubinstein-Taybi syndrome (RTS) is a rare developmental disorder characterized by craniofacial dysmorphisms, broad thumbs and toes, mental and growth deficiency, and recurrent respiratory infections. RTS has been associated with CREBBP gene mutations, but EP300 gene mutations have recently been reported in 6 individuals. In the present study, the humoral immune response in 16 RTS patients with recurrent respiratory infections of possible bacterial etiology was evaluated. No significant differences between patients and 16 healthy controls were detected to explain the high susceptibility to respiratory infections: normal or elevated serum immunoglobulin levels, normal salivary IgA levels, and a good antibody response to both polysaccharide and protein antigens were observed. However, most patients presented high serum IgM levels, a high number of total B cell and B subsets, and also high percentiles of apoptosis, suggesting that they could present B dysregulation. The CREBBP/p300 family gene is extremely important for B-cell regulation, and RTS may represent an interesting human model for studying the molecular mechanisms involved in B-cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single bout of resistance exercise (RE) induces hormonal and immune responses, playing an important role in a long-term adaptive process. Whole-body vibration (WBV) has also been shown to affect hormonal responses. Evidence suggests that combining WBV with RE may amplify hormonal and immune responses due to the increased neuromuscular load. Therefore, the aim of this study was to evaluate salivary cortisol (Scortisol) and salivary IgA (SIgA) concentrations following a RE session combined or not with WBV. Nine university students (22.9 ± 5.1 years, 175.8 ± 5.2 cm, and 69.2 ± 7.3 kg) performed five sets of squat exercise (70% one-repetition-maximum) combined (R+V30) or not (R) with WBV at 30 Hz. Saliva samples were obtained before and after exercise. Subjects also rated their effort according to the Borg CR-10 scale (RPE). Data were analyzed by a mixed model. RPE was higher after R+V30 (8.3 ± 0.7) compared to R (6.2 ± 0.7). However, Scortisol (pre: 10.6 ± 7.6 and 11.7 ± 7.6, post: 8.3 ± 6.3 and 10.2 ± 7.2 ng/mL for R and R+V30, respectively) and SIgA concentrations (pre: 98.3 ± 22.6 and 116.1 ± 51.2, post: 116.6 ± 64.7 and 143.6 ± 80.5 µg/mL for R and R+V30, respectively) were unaffected. No significant correlations were observed between Scortisol and RPE (r = 0.45, P = 0.22; r = 0.30, P = 0.42, for R and R+V30, respectively). On the basis of these data, neither protocol modified salivary cortisol or IgA, although RPE was higher after R+V30 than R.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR) and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most frequently reported Chinese renal biopsy data have originated from southeastern China. The present study analyzed the renal biopsy data from northeastern China. The records of 1550 consecutive native patients who were diagnosed with primary glomerular diseases (PGD) after renal biopsy at our hospital during 2005-2009 were used. These patients were divided into four age groups for stratified analysis: <15, 15-44, 45-59, and ≥60 years old. Among PGD, minimal change disease (MCD) was the most common histologically diagnosed disease (30.7%), followed by IgA nephropathy (IgAN), mesangial proliferative glomerulonephritis (MsPGN), membranous nephropathy (MN), membranoproliferative glomerulonephritis (MPGN), focal segmental glomerulosclerosis (FSGS), and endocapillary proliferative glomerulonephritis (EnPGN). MCD was the disease most frequently observed (43.7%) in the <15-year-old group. MsPGN was the most common disease in the elderly group (38.1%). MsPGN was more prevalent in females (27.8%), whereas MCD was more prevalent in males (35.3%). Primary glomerular diseases constituted the most commonly encountered group of diseases with a high prevalence of MCD, which predominantly affected males and young adults. The prevalence of MCD was high in northeastern China. Further study is necessary to expand the epidemiologic data available for renal disease in China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that cytokines can act as molecular adjuvant to enhance the immune response induced by DNA vaccines, but it is unknown whether interleukin 33 (IL-33) can enhance the immunocontraceptive effect induced by DNA vaccines. In the present study, we explored the effects of murine IL-33 on infertility induced by Lagurus lagurus zona pellucida 3 (Lzp3) contraceptive DNA vaccine administered by the mucosal route. Plasmid pcD-Lzp3 and plasmid pcD-mIL-33 were encapsulated with chitosan to generate the nanoparticle chi-(pcD-Lzp3+pcD-mIL-33) as the DNA vaccine. Sixty female ICR mice, divided into 5 groups (n=12/group), were intranasally immunized on days 0, 14, 28, and 42. After intranasal immunization, the anti-LZP3-specific IgG in serum and IgA in vaginal secretions and feces were determined by ELISA. The results showed that chi-(pcD-Lzp3+pcD-mIL-33) co-immunization induced the highest levels of serum IgG, secreted mucosal IgA, and T cell proliferation. Importantly, mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33) had the lowest birth rate and mean litter size, which correlated with high levels of antibodies. Ovaries from infertile female mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33) showed abnormal development of ovarian follicles, indicated by atretic follicles and loss of oocytes. Our results demonstrated that intranasal delivery of the molecular adjuvant mIL-33 with chi-pcD-Lzp3significantly increased infertility by enhancing both systemic and mucosal immune responses. Therefore, chi-(pcD-Lzp3+pcD-mIL-33) co-immunization could be a strategy for controlling the population of wild animal pests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was designed to assess the influence of resistance training on salivary immunoglobulin A (IgA) levels and hormone profile in sedentary adults with Down syndrome (DS). A total of 40 male adults with DS were recruited for the trial through different community support groups for people with intellectual disabilities. All participants had medical approval for participation in physical activity. Twenty-four adults were randomly assigned to perform resistance training in a circuit with six stations, 3 days per week for 12 weeks. Training intensity was based on functioning in the eight-repetition maximum (8RM) test for each exercise. The control group included 16 age-, gender-, and BMI-matched adults with DS. Salivary IgA, testosterone, and cortisol levels were measured by ELISA. Work task performance was assessed using the repetitive weighted-box-stacking test. Resistance training significantly increased salivary IgA concentration (P=0.0120; d=0.94) and testosterone levels (P=0.0088; d=1.57) in the exercising group. Furthermore, it also improved work task performance. No changes were seen in the controls who had not exercised. In conclusion, a short-term resistance training protocol improved mucosal immunity response as well as salivary testosterone levels in sedentary adults with DS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (rs=0.283, P=0.049) and serum albumin (rs=0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; rs=-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heavy metals, such as methylmercury, are key environmental pollutants that easily reach human beings by bioaccumulation through the food chain. Several reports have demonstrated that endocrine organs, and especially the pituitary gland, are potential targets for mercury accumulation; however, the effects on the regulation of hormonal release are unclear. It has been suggested that serum prolactin could represent a biomarker of heavy metal exposure. The aim of this study was to evaluate the effect of methylmercury on prolactin release and the role of the nitrergic system using prolactin secretory cells (the mammosomatotroph cell line, GH3B6). Exposure to methylmercury (0-100 μM) was cytotoxic in a time- and concentration-dependent manner, with an LC50 higher than described for cells of neuronal origin, suggesting GH3B6 cells have a relative resistance. Methylmercury (at exposures as low as 1 μM for 2 h) also decreased prolactin release. Interestingly, inhibition of nitric oxide synthase by N-nitro-L-arginine completely prevented the decrease in prolactin release without acute neurotoxic effects of methylmercury. These data indicate that the decrease in prolactin production occurs via activation of the nitrergic system and is an early effect of methylmercury in cells of pituitary origin.