186 resultados para Friedrich III, Elector Palatine, 1515-1576.
Resumo:
In this work, we report the synthesis and the photoluminescence features of Eu(III)-doped yttrium-aluminium oxide obtained by non-hydrolytic sol-gel routes. After heating the powders above 600 ºC the XRD patterns show the presence of the Y4Al2O9 (YAM) and Y3Al5O12 (YAG) phases. At 800 and at 1500 ºC the PL spectra display the Eu(III) lines characteristic of the YAM monoclinic phase. The 5D0->7F2 transition is favored relatively to the 5D0->7F1 lines. However, at 1100 ºC the cubic YAG is the preferential phase and the 5D0->7F1 transition dominates the spectrum. The Eu(III) ions lie in a centrosymmetrical site. The different solvents used in the sol-gel synthesis also change the relative proportion between these two phases. This is monitored analyzing the modifications in the relative intensity between the 5D0->7F2 and the 5D0->7F1 transitions.
Resumo:
Considerable attention has been paid to chitosan and derivatives as efficient adsorbents of pollutants such as metal ions and dyes in aqueous medium. Nevertheless, no report can be found on the remedial actions of chitosan microspheres crosslinked with tripolyphosphate to control acidity, iron (III) and manganese (II) contents in wastewaters from coal mining. In this work, chitosan microspheres crosslinked with tripolyphosphate were used for the neutralization of acidity and removal of Fe (III) and Mn (II) from coal mining wastewaters. The study involved static and dinamic methods. The neutralization capacity of the surface of the static system was 395 mmol of H3O+ per kilogram of microspheres, higher than that of the dynamic one (223 mmol kg-1). The removal of Fe(III) in wastewater was of 100% and that of Mn(II) was 90%.
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
In this work we present a new parametrization in molecular mechanics for studying iron complexes. This force field was implemented in the FORCES 2000 program, developed in our group for studying in coordination compounds of interest in bioinorganic chemistry. Mononuclear and dinuclear iron complexes were studied using this program with good success.
Resumo:
The first two papers in this series described the basic theory involved in supercritical fluid chromatography (SFC), how the technique evolved from gas and liquid chromatography and how the instrumentation was developed. Over the last two years, a commercial, dedicated packed-column SFC/MS instrument appeared on the market. The SFC continues to grow in use, with fundamental developments, coupled with a steady rise in the number of industrial users and applications.
Resumo:
In this work, we report the synthesis and the photoluminescence features of a Eu(III)-doped modified silica matrix obtained by the sol-gel method. The matrix was prepared by reaction between tetraethylorthosilicate and phenyltriethoxysilane alkoxide. The hydrolysis occurred using basic catalysis. The solids were treated at 100, 200 and 300 ºC during 4 h and the structure was determined by thermogravimetric analysis (TG/DTG), nuclear magnetic resonance (NMR 29Si and 13C), infrared spectroscopy (IR) and photoluminescence (PL). The PL spectra display the Eu(III) lines characteristic of the ion, 5D0 -> 7F J (J=0, 1, 2, 3, 4), the blue emission as ascribed in the silica matrix. The NMR and TG showed the stability of hybrid silica.