372 resultados para Cloreto de sódio
Resumo:
Many theories about the mechanism of action of local anesthetics (LA) are described in the literature. Two types of theories can be distinguished: those that focus on the direct effects of LA on their target protein in the axon membranes, i.e. the voltage-gated sodium channel and the ones that take into account the interaction of anesthetic molecules with the lipid membrane phase for the reversible nerve blockage. Since there is a direct correlation between LA hydrophobicity and potency, it is crucial to take this physico-chemical property into account to understand the mechanism of action of LA, be it on the sodium channel protein, lipid(s), or on the whole membrane phase.
Resumo:
Eight trace elements were determined in 20 Brazilian brands of grape juice, distributed over the country. Highest measured concentrations (As: 0.016; Cd: 0.010; Cr: 0.060; Cu: 1.28; Ni: 0.032; Pb: 0.016; Sb: 0.0040 and Zn: 1.44 mg L-1) comply with Brazilian maximal tolerance levels for inorganic contaminants (As: 0.5; Cd: 0.5; Cr: 0.1; Cu: 30; Ni: 3; Pb: 0.4; Sb: 1 and Zn: 25 mg L-1). Determination of arsenic species has shown inorganic As(V) as predominant in most samples. Sodium concentrations, nowadays a major public health concern, were also measured, showing an average of 149 mg L-1. Analytical results for this element were much higher than label concentrations, showing the need for better quality control.
Resumo:
Mixed-micelle formation between sodium chlolate (NaC) and the anionic surfactant sodium dodecanoate (SDoD) in Tris-HCl buffer solutions, pH 9.00, varying the molar fraction of the surfactants, was investigated by means of electrical conductivity and steady-state fluorescence of pyrene. The critical micelar concentration (cmc) was measured from the equivalent conductance versus the square root of the molar surfactant concentration plots and the regular solution theory (RST) was used to predict the mixing behavior. The I1/I3 pyrene ratio-surfactant concentration plots were used as an additional technique to follow the behavior and the changes in the micropolarity of the mixed micelles.
Resumo:
The aim of this study was to verify the influence of the apparent molecular size of aquatic humic substances on the effectiveness of coagulation with ferric chloride. Coagulation-filtration tests using jar test and bench-scale sand filters were carried out on samples of water with true color of approximately 100 Hazen units, prepared with aquatic humic substances of different molecular sizes (F1: < 0.45 µm, F2: 100 kDa - 0.45 µm, F3: 30 - 100 kDa and F4': < 30 kDa). For the water samples with lower apparent molecular size fractions, greater dosages of coagulant was needed to remove the color around 5.0 Hanzen units, mainly because these water samples contain higher concentrations of fulvic acids, which exhibited a larger number of negatively-charged groups.
Resumo:
Samplings of atmospheric particulate matter (PM) were carried out between the months of March and April of 2007, simultaneously in two areas of Londrina, an urban (Historical Museum) and other rural (Farm School-UEL). PM was collected using the cascade impactor consisting of four impaction stages (0.25 to 10 μm). The results indicated that the fine fraction (PM2.5) represented a significant portion of the mass of PM10 (70 and 67% in the urban and rural places, respectively). Cl-, NO3- and SO4(2-) were determined by ion chromatography and the size distribution is presented. Natural and anthropogenic sources were suggested to the ionic components in the fine and coarse mode of PM.
Resumo:
A flow injection chemiluminescence method for the determination of paracetamol in pharmaceutical formulations is described. It is based on the consumption of the sodium hypochlorite by paracetamol and decreases of the analytical signal. The analytical curve was linear in the paracetamol concentration range from 5.0 x 10-6 to 5.0 x 10-5 mol L-1, with a detection limit of 1.8 x 10-6 mol L-1. The RSDs were 2.0 and 1.2% respectively for 2.0 x 10-5 and 4.0 x 10-5 mol L-1 paracetamol solutions (n = 10) and a sampling frequency of 180 h-1 was obtained.
Resumo:
This work presents a detailed study about the sorption of crystal violet (CV) cationic dye onto polyether type polyurethane foam (PUF). The sorption process was based on the formation of an ionic-pair between cationic dye and dodecylsulfate anion (SDS), which presented high affinity by PUF. Set-up employed in the study was built up by adjusting a 200 mg cylinder of PUF to the arm of an overhead stirrer. The system was characterized in relation to equilibrium and kinetic aspects and it was modeled by employing Langmuir and Freundlich isotherms. Obtained results showed that the ratio between SDS and MB concentrations played an important role on the sorption process. According to results found it was possible to retain up to 3.4 mg of dye from 200 mL of a 5.0 x 10-5 mol L-1 CV solution containing 1.25 x 10-4 mol L-1 SDS, which represented a removal efficiency of around 92%.
Resumo:
Mixtures of ethyl(hydroxyethyl)cellulose (EHEC) and Sodium Dodecyl Sulfate (SDS) were investigated using surface tension, conductivity and viscosity measurements in aqueous solutions. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration (cac) and saturation of the polymer by SDS (psp) were determined from the plots of surface tension and specific conductivity versus surfactant concentration. Through the final results we see that there was no specific link of polymer with the surfactant, implying therefore a phenomenon of only cooperative association.
Resumo:
The quaternary chitosan was synthesized by reaction of chitosan with glycidyl trimethylammonium chloride. it was characterized by infrared spectra and conductometric titration. Adsorption of reactive blue 4 (RB4) and reactive red 120 (RR120) by quaternary chitosan was studied from aqueous medium. Two kinetic adsorption models were tested: pseudo first-order and pseudo second-order. The experimental data best fitted the pseudo second-order model. The Langmuir isotherm model provided the best fit to the equilibrium data in the concentration range investigated and the maximum adsorption capacity determined was 415 mg (RR120) and 637 mg (RB4) of reactive dye per gram of adsorbent.
Resumo:
Interlaboratorial comparison of the determination of hardness and chloride in water had been performed by 38 and 37 laboratories, respectively. In all cases the participating laboratories used its routine methods. Homogeneity and stability testing were performed on the samples sent to the laboratories. The codified results are graphically reported and compared to assigned value, determined by the consensus of the laboratories. Satisfactory results were obtained for 71 and 73% of the laboratories, considering hardness and chloride determination, respectively.
Resumo:
This text describes an experiment on fractional precipitation of a polymer together with determination of average degree of polymerization by NMR. Commercial sodium polyphosphate was fractionated by precipitation from aqueous solution by adding increasing amounts of acetone. The polydisperse salt and nine fractions obtained from it were analyzed by 31P Nuclear Magnetic Resonance and the degree of polymerization of the salts and of the fractions were calculated. Long-chain sodium polyphosphate was also synthesized and analyzed. This experiment was tested in a PChem lab course but it can be used also to illustrate topics of inorganic polymers and analytical chemistry.
Resumo:
Reduction of camphor to a mixture of borneol and isoborneol was performed using NaBH4 as the reducing agent under suitable conditions. Although more effective reduction was accomplished using toxic methanol, an alternative non-toxic ethanolic system is described. This experiment is important to introduce undergraduate students in reductive procedures, and can be used to show details on stereoselective procedures on carbonyl moieties (facial diastereoselectivity, Bürgi-Dunitz trajectory, diastereomeric excess).
Resumo:
In this work, the interactions between the non-ionic polymer of ethyl(hydroxyethyl)cellulose (EHEC) and mixed anionic surfactant sodium dodecanoate (SDoD)-sodium decanoate (SDeC) in aqueous media, at pH 9.2 (20 mM borate/NaOH buffer) were investigated by electric conductivity and light transmittance measurements at 25 ºC. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration and saturation of the polymer by surfactants were determined from plots of specific conductivity vs total surfactant concentration, [surfactant]tot = [SDoD] + [SDeC]. Through the results was not observed a specific link of polymer with the surfactant, implying therefore a phenomenon only cooperative association.
Resumo:
A high performance liquid chromatographic-diode array detection method for the determination of busulfan in plasma was developed and validated. Sample preparation consisted of protein precipitation followed by derivatization with sodium diethyldithiocarbamate and liquid-liquid extraction with methyl-tert-butyl ether. Chromatograms were monitored at 277 nm. Separation was carried out on a Lichrospher RP 18 column (5 µm, 250 x 4 mm). The mobile phase consisted of water and acetonitrile (20:80, v/v). The method presented adequate specificity, linearity, precision and accuracy and allowed reliable determination of busulfan in clinical plasma samples, being applied to three patients submitted to bone marrow transplantation.
Resumo:
Several organic chemistry labs in Brazil suffers from the absence of a safe method to extrude sodium wire, used to obtain anhydrous solvents such as THF or ethyl ether. This technical note presents the assembly instructions for a sodium wire press, similar to the one that has been used for the past four years in our laboratory without any maintenance.