188 resultados para Ammonium Perchlorate
Resumo:
Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.
Resumo:
NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.
Resumo:
The effectiveness of cleaning and sanitizing procedures in controlling Staphylococcus aureus, Salmonella Enteritidis, and Pseudomonasfluorescens adhered to granite and stainless steel was evaluated. There was no significant difference (p > 0.05) in the adherence of pure cultures of these microorganisms to stainless steel. The numbers of P. fluorescens and S. Enteritidis adhered to granite were greater (p < 0.05) than the numbers of S. aureus. Additionally, the adherence of P. fluorescens was similar to the adherence of S. Enteritidis on granite surface. In a mixed culture with P. fluorescens, S aureus adhered less (p < 0.05) to stainless steel surfaces (1.31 log CFU.cm-2) than when in a pure culture (6.10 log CFU.cm-2). These results suggest that P. fluorescens inhibited the adherence of S. aureus. However, this inhibition was not observed in the adherence process for granite. There was a significant difference (p < 0.05) between the number of adhered cells before and after pre-washing for S. aureus on stainless steel and granite surfaces, and after washing with detergent for all microorganisms and surfaces. The efficiency of the cleaning plus sanitizing procedures was not significantly different (p > 0.05) between the surfaces. However, a significant difference was observed (p < 0.05) between the sanitizer solutions. Sodium hypochlorite and peracetic acid were more bactericidal (p < 0.05) than a quaternary ammonium compound. With regard to microorganisms, S. aureus was the least resistant to the sanitizers. These results show the importance of good cleaning and sanitization procedures to prevent bacterial adherence and biofilm formation.
Resumo:
The efficiency of four Sanitizers - peracetic acid, chlorhexidine, quaternary ammonium, and organic acids - was tested in this work using different bacteria recognized as a problem to meat industry, Salmonella sp., S. aureus, E. coli and L. monocytogenes. The effects of sanitizer concentration (0.2, 0.5, 0.6, 1.0, 1.1 and 1.4%), at different temperatures (10 and 45 °C) and contact time (2, 10, 15, 18 and 25 minutes) were evaluated. Tests in an industrial plant were also carried out considering previously obtained results. In a general way, peracetic acid presented higher efficiencies using low concentration (0.2%) and contact time (2 minutes) at 10 °C. The tests performed in industrial scale showed that peracetic acid presented a good performance in concentration and contact time lower than that suggested by the suppliers. The use of chlorhexidine and quaternary ammonium led to reasonable results at the indicated conditions, and organic acids were ineffective under concentration and contact time higher than those indicated by the suppliers in relation to Staphylococcus aureus. The results, in general, show that the choice for the most adequate sanitizer depends on the microorganism contaminant, the time available for sanitizer application, and also on the process cost.
Resumo:
Antimicrobial activities of two commercial disinfectants, alone or combined with heat, against three Salmonella strains and three Listeria monocytogenes strains were studied. The efficacy of disinfectants against planktonic bacteria and bacteria attached to three food contact industrial surfaces (stainless steel, polytetraflourethylene, and rubber) was investigated. The tests were conducted using the sanitizer (quaternary ammonium compounds, and alquyldiethylenediamineglycine and di-alquyldiamineethylglycine) concentrations recommended by the manufacturers, and concentrations twice and four times higher than those values. The recommended concentrations were not effective to kill bacteria, especially when they were attached to surfaces. Concentrations of disinfectants twice and four times higher than those recommended were needed to fully eliminate planktonic bacteria. These same sanitizer concentrations were not sufficient to remove attached bacteria. To remove them from the surfaces, a treatment with recommended concentrations in combination with heat was needed. Our results indicate that these two pathogenic bacteria could survive common sanitation programs used in the food industry.
Resumo:
Spirulina platensis is a photoautotrophic mesophilic cyanobacterium. Its main sources of nutrients are nitrate, urea, and ammonium salts. Spirulina cultivation requires temperature, light intensity, and nutrient content control. This microalgae has been studied and used commercially due to its therapeutic and antioxidant potential. In addition, several studies have reported its ability to use CO2, its immune activity, and use as an adjuvant nutritive factor in the treatment of obesity. The objective of this study is the production of biomass of S. platensis using different rates of stirring, nitrogen source, amount of micronutrients, and luminosity. A 2(4) experimental design with the following factors: stirring (120 and 140 RPM), amount of nitrogen (1.5 and 2.5 g/L), amount of micronutrients (0,25 and 0,75 mL/L) (11 and 15 W), and luminosity was used. Fermentation was performed in a 500 mL conical flask with 250 mL of culture medium and 10% inoculum in an incubator with controlled stirring and luminosity. Fermentation was monitored using a spectrophotometer (560 nm), and each fermentation lasted 15 days. Of the parameters studied, luminosity is the one with the highest significance, followed by the amount of nitrogen and the interaction between stirring and micronutrients. Maximum production of biomass for 15 days was 2.70 g/L under the following conditions: luminosity15W; stirring, 120 RPM; source of nitrogen, 1.5 g/L; and micronutrients, 0.75 mL/L.
Resumo:
The antioxidant activities of ethanolic crude extract (LPCE) and its four different solvent sub-fractions (namely, diethyl ether fraction (LPDF), ethyl acetate fraction (LPEF), n-butyl alcohol fraction (LPBF) and residue fraction (LPR)) from longan pericarps were investigated employing various systems including 2,2-diphenyl-1-picrylhydrazyl (DPPH)/ 2,2'-amino-di(2-ethyl-benzothiazoline sulphonic acid-6)ammonium salt (ABTS)/hydroxyl radical scavenging activity, total phenolic content and reducing power. Each extract showed concentration-dependent antioxidant activity. LPEF showed the highest scavenging activity against DPPH, ABTS and hydroxyl radicals with EC50 values of 0.506, 0.228 and 4.489 mg/mL, respectively. LPEF showed the highest reducing power with EC50 values of 0.253 mg/mL. The next was LPDF with EC50 values of 0.260 mg/mL. LPEF possessed the highest total phenolic content (230.816 mg/g, expressed as gallic acid equivalents), followed by LPDF, LPBF, LPCE and LPR. The results suggested that longan pericarp fractions possessed significant antioxidant activities and could be a promising source of natural antioxidant.
Resumo:
The effect of mixture of seeds of Brachiaria brizantha, cv. Marandu, with different sources, granulometry, and phosphatic fertilizer doses during various periods of exposure on the physiological potential of the seeds has been assessed. The treatments consisted in seed exposure during periods of 0, 3, 6, 12, 24, 36, 48, 72, 96, and 120 h to the following fertilizers: ground granulated single superphosphate (SS), and powdered (SSp); and ground granulated ammonium monophosphate (AMP), at doses of 40 and 80 kg P2O5 ha-1. Tests of germination, tetrazolium, moisture content, and vigor (first count, electrical conductivity, emergence, emergence speed, and fresh mass of seedlings) were performed. It has been concluded that seed physiological potential of B. brizantha cv. Marandu is reduced with increase on the exposure period to phosphatic fertilizer. Such effect, however, is dependent on the product source, granulometry, and dose. SSp was the most harmful to seeds, followed by SSp and AMP, respectively. Moreover, considering a 60% germination rate as acceptable, it may be inferred that seeds can be kept in contact with AMP and SSp, in dose of 80 kg of P2O5 ha-1, respectively, for periods of 71.2 and 16.2 hours.