275 resultados para sulfur levels
Resumo:
The present study was designed to assess the effects of bromocriptine, a dopamine agonist, on pituitary wet weight, number of immunoreactive prolactin cells and serum prolactin concentrations in estradiol-treated rats. Ovariectomized Wistar rats were injected subcutaneously with sunflower oil vehicle or estradiol valerate (50 or 300 µg rat-1 week-1) for 2, 4 or 10 weeks. Bromocriptine (0.2 or 0.6 mg rat-1 day-1) was injected daily during the last 5 or 12 days of estrogen treatment. Data were compared with those obtained for intact control rats. Administration of both doses of estrogen increased serum prolactin levels. No difference in the number of prolactin cells in rats treated with 50 µg estradiol valerate was observed compared to intact adult animals. In contrast, rats treated with 300 µg estradiol valerate showed a significant increase in the number of prolactin cells (P<0.05). Therefore, the increase in serum prolactin levels observed in rats treated with 50 µg estradiol valerate, in the absence of morphological changes in the pituitary cells, suggests a "functional" estrogen-induced hyperprolactinemia. Bromocriptine decreased prolactin levels in all estrogen-treated rats. The administration of this drug to rats previously treated with 300 µg estradiol valerate also resulted in a significant decrease in pituitary weight and number of prolactin cells when compared to the group treated with estradiol alone. The general antiprolactinemic and antiproliferative pituitary effects of bromocriptine treatment reported here validate the experimental model of estrogen-induced hyperprolactinemic rats
Resumo:
In the present study we investigated the influence of methotrexate (MTX) and azathioprine (AZA) on the serum levels of the IgA-a1-antitrypsin (IgA-AT) complex in patients with the systemic form of juvenile chronic arthritis (JCA). Fifty-six JCA patients (22 treated with MTX, 18 treated with AZA, and 16 not treated with any immunosuppressive agent) were enrolled in the study. MTX dosage ranged from 0.3 to 0.5 mg kg-1 week-1, while AZA was given daily at an average dose of 1 mg/kg. MTX was given for 13 months (SD = 7 months) whereas AZA for 11 months (SD = 6 months). The average value of the complex was higher in JCA patients than in both control groups (0.74 ± 0.73 U vs 0.37 ± 0.13 U (control children), P<0.001 and vs 0.23 ± 0.12 U (control adults), P<0.001). Values exceeding the normal range were found in twenty-two JCA patients (39.4%). Serum IgA-AT level was lowest in the MTX group compared to AZA and non-treated patients (0.56 ± 0.24 U, 0.76 ± 0.43 U, 0.95 ± 0.52 U, respectively, P<0.05). IgA values exceeding normal levels for age were found in 14% of the patients. A correlation between the levels of the IgA-AT complex and C-reactive protein (r = 0.43, P<0.01), a1-acid-glycoprotein (r = 0.45, P<0.01), a1-antichymotrypsin (r = 0.52, P<0.01), a1-antitrypsin (r = 0.40, P<0.01) and IgA (r = 0.56, P<0.01) was established
Resumo:
Iron-deficiency anemia is the nutritional deficiency most frequently occurring throughout the world, which manifests as a complex systemic disease involving all cells, affecting enzyme activities and modifying protein synthesis. In view of these considerations, the objective of the present study was to determine the effects of iron-deficiency anemia on disaccharidases and on the epithelial morphokinetics of the jejunal mucosa. Newly weaned male Wistar rats were divided into 4 groups of 10 animals each: C6w received a standard ration containing 36 mg elemental iron per kg ration for 6 weeks; E6w received an iron-poor ration (5-8 mg/kg ration) for 6 weeks; C10w received an iron-rich ration (36 mg/kg ration) for 10 weeks; E10w received an iron-poor ration for 6 weeks and then an iron-rich ration (36 mg/kg) for an additional 4 weeks. Jejunal fragments were used to measure disaccharidase content and to study cell proliferation. The following results were obtained: 1) a significant reduction (P<0.001) of animal weight, hemoglobin (Hb), serum iron and total iron-binding capacity (TIBC) in group E6w as compared to C6w; reversal of the alterations in Hb, serum iron and TIBC with iron repletion (E10w = C10w); animal weights continued to be significantly different in groups E10w and C10w. 2) Sucrase and maltase levels were unchanged; total and specific lactase levels were significantly lower in group E6w and this reduction was reversed by iron repletion (E10w = C10w). 3) The cell proliferation parameters did not differ between groups. On the basis of these results, we conclude that lactase production was influenced by iron deficiency and that this fact was not related to changes in cell population and proliferation in the intestinal mucosa
Resumo:
Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 µg/side), SCH23390 (0.5 µg/side), norepinephrine (0.3 µg/side), timolol (0.3 µg/side), 8-OH-DPAT (2.5 µg/side), NAN-190 (2.5 µg/side), forskolin (0.5 µg/side), KT5720 (0.5 µg/side) or 8-Br-cAMP (1.25 µg/side). Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were ineffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h after training, which is regulated by D1, ß, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h) in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.
Resumo:
C-reactive protein (CRP) was measured by ELISA in the sera of 165 healthy blood donors and 125 normal children 1 to 14 years old. The serum levels of blood donors ranged from 0.05 to 57.6 mg/l with median and mean values of 1.8 mg/l and 4.86 mg/l, respectively. CRP levels ranged from 0.02 to 14.4 mg/l in the children's sera, the median being 0.45 mg/l and the mean 1.65 mg/l. No individual lacking CRP was detected. The high CRP levels observed in the present study suggest that the population of the State of São Paulo may usually be exposed to subacute infections and/or inflammation without presenting clinical symptoms
Resumo:
The pathogenesis of protracted diarrhea is multifactorial. In developing countries, intestinal infectious processes seem to play an important role in triggering the syndrome. Thirty-four children aged 1 to 14 months, mean 6.5 months, with protracted diarrhea were studied clinically and in terms of small intestinal mucosal morphology. Mild, moderate or severe hypotrophy of the jejunal mucosa was detected in 82% of cases, and mucosal atrophy was observed in 12%. The intensity of the morphological changes of the jejunal mucosa correlated negatively with serum albumin levels. No correlation was detected between mucosal grading and duration of diarrhea or between mucosal grading and weight reported as percentile. After nutritional support was instituted, serial jejunal biopsies were obtained from 12 patients: five patients submitted to parenteral nutrition for 7 to 38 days, mean 17 days, and 7 patients receiving a hypoallergenic oral diet (semi-elemental formula, 3; chicken formula, 3; human milk, 1). In seven cases (58%) a progressive increase in villus height and a decrease in the number of inflammatory cells were noted. Recovery of the morphologic pattern was accompanied by clinical improvement in all patients
Resumo:
Eight Panthera onca (Po), 13 Felis concolor (Fc), 7 Felis yagouaroundi (Fy), 7 Felis tigrina (Ft) and 5 Felis pardalis (Fp) specimens from São Paulo State zoos were used. All animals were restrained with darts containing 10 mg/kg ketamine and 1 mg/kg xylazine. Venous blood samples were collected as soon as possible (within 15-20 min) and serum was frozen until the time for cortisol quantification. Cortisol was determined using a solid phase radioimmunoassay with an intra-assay coefficient of 8.51%. Data were analyzed statistically by the Kruskal-Wallis test, followed by Dunn's multiple comparisons test, and the one-sample t-test, with the level of significance set at P<0.05. Data are reported as means ± SEM. Cortisol levels differed among the captive felines: Po = 166 ± 33a, Fc = 670 ± 118b, Fy = 480 ± 83b, Ft = 237 ± 42ab, Fp = 97 ± 12a nmol/l (values followed by different superscript letters were significantly different (P<0.001)). Since most of the veterinary procedures on these species involve chemical restraint, these results show the necessity of preventive measures in order to minimize the effect of restraint stress on more susceptible species
Resumo:
The levels of testosterone (T) and 11-ketotestosterone (11-KT) of the South American pacu Piaractus mesopotamicus were determined by radioimmunoassay during two stages of the reproductive cycle, i.e., resting and maturation, and the gonadosomatic index (GSI) was calculated. The highest levels of T and 11-KT were reached during the maturation stage (T = 2400 ± 56 pg/ml; 11-KT = 2300 ± 60 pg/ml) and lower levels were maintained during the resting period. The rise in androgen levels occurred with the appearance of spermatozoa in the maturation stage, when GSI was highest
Resumo:
Adult Channa punctatus murrels of both sexes (60-80 g) were collected locally from Ramgarh Lake during the second week of every month (10 individuals of each sex/month) throughout the year. Blood samples were collected and analyzed for serum calcium and phosphate levels by the methods of Trinder (1960) and Fiske and Subbarow (1925), respectively. Gonads were fixed to judge the state of maturation of the fish. Males exhibited no change in serum calcium levels throughout the year in correlation with testicular maturation. However, serum phosphate levels exhibited a rise in correlation with the increased gonadosomatic index. Females showed marked seasonal changes in serum calcium and phosphate levels which were associated with ovarian maturation (vitellogenesis).
Resumo:
Low levels of sex hormone-binding globulin (SHBG) are considered to be an indirect index of hyperinsulinemia, predicting the later onset of diabetes mellitus type 2. In the insulin resistance state and in the presence of an increased pancreatic ß-cell demand (e.g. obesity) both absolute and relative increases in proinsulin secretion occur. In the present study we investigated the correlation between SHBG and pancreatic ß-cell secretion in men with different body compositions. Eighteen young men (30.0 ± 2.4 years) with normal glucose tolerance and body mass indexes (BMI) ranging from 22.6 to 43.2 kg/m2 were submitted to an oral glucose tolerance test (75 g) and baseline and 120-min blood samples were used to determine insulin, proinsulin and C-peptide by specific immunoassays. Baseline SHBG values were significantly correlated with baseline insulin (r = -0.58, P<0.05), proinsulin (r = -0.47, P<0.05), C-peptide (r = -0.55, P<0.05) and also with proinsulin at 120 min after glucose load (r = -0.58, P<0.05). Stepwise regression analysis revealed that proinsulin values at 120 min were the strongest predictor of SHBG (r = -0.58, P<0.05). When subjects were divided into obese (BMI >28 kg/m2, N = 8) and nonobese (BMI £25 kg/m2, N = 10) groups, significantly lower levels of SHBG were found in the obese subjects. The obese group had significantly higher baseline proinsulin, C-peptide and 120-min proinsulin and insulin levels. For the first time using a specific assay for insulin determination, a strong inverse correlation between insulinemia and SHBG levels was confirmed. The finding of a strong negative correlation between SHBG levels and pancreatic ß-cell secretion, mainly for the 120-min post-glucose load proinsulin levels, reinforces the concept that low SHBG levels are a suitable marker of increased pancreatic ß-cell demand.
Resumo:
Many clinical and epidemiological studies have demonstrated the relationship between serum ferritin and ischemic heart disease. In the present study we evaluated the relationship between coronary heart disease (CHD) and serum ferritin levels in patients submitted to coronary arteriography. We evaluated 307 patients (210 (68.7%) males; median age: 60 years) who were submitted to coronary angiography, measurement of serum ferritin and identification of clinical events of ischemic heart disease. Serum ferritin is reported as quartiles. Ninety-six patients (31.27%) had normal coronary angiography (group 1) and 211 (68.73%) had coronary heart disease (group 2). Of the patients with CHD, 61 (28.9%) had serum ferritin levels higher than 194 ng/ml (4th quartile), as opposed to only 14 (14.58%) of those without CHD (P = 0.0067). In the 2nd quartile, 39 patients (18.48%) had CHD, while 35 patients (36.46%) had normal coronary arteries (P = 0.00064). Multivariate analysis of the data showed that the difference between groups was not statistically significant (P = 0.33). We conclude that there is no independent relationship between coronary heart disease and increased levels of serum ferritin.
Resumo:
Gamma-glutamyltranspeptidase (GGT-EC 2.3.2.2) activity and glutathione (GSH) content were measured in livers of female weanling Wistar rats (N = 5-18), submitted to rice-and-bean diets (13 and 6% w/w protein), both supplemented or not with DL-methionine (0.5 and 0.23 g/100 g dry diet, respectively). After 28 days, the rats on the rice-and-bean diets showed significantly higher levels (four times higher) of liver GGT activity and a concomitant 50% lower concentration of liver GSH in comparison with control groups feeding on casein. The addition of DL-methionine to rice-and-bean diets significantly increased the liver GSH content, which reached levels 50% higher than those found in animals on casein diets. The increase in GSH was accompanied by a decrease in liver GGT activity, which did not reach levels as low as those observed in the control groups. No significant correlation could be established between GGT and GSH changes under the present experimental conditions. Linear correlation analysis only revealed that in animals submitted to unsupplemented rice-and-bean diets GSH concentration was positively associated (P<0.05) with weight gain, food intake and food efficiency. GGT, however, was negatively correlated (P<0.05) with food intake only, and exclusively for supplemented rice-and-bean diets. The high levels of GGT activity observed in the present study for rats receiving a rice-and-bean mixture could be a result of the poor quality of these diets associated with their deficiency in sulfur amino acids. The results also suggest that diet supplementation with methionine could be important in the reduction of the deleterious effects of GSH depletion by restoring the intracellular concentration of this tripeptide.
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Resumo:
We have investigated the relationship between fetal hemoglobin (HbF) levels and metabolic control in subjects with insulin-dependent (N = 79) and non-insulin-dependent diabetes mellitus (N = 242). HbF and hemoglobin A1c (HbA1c) levels were increased in subjects with type 1 and type 2 diabetes as compared to levels in nondiabetic individuals (P<0.0001), and were significantly higher in type 1 than in type 2 diabetes subjects. Lower levels of HbA1c and HbF were observed in type 2 diabetes subjects treated by diet, intermediate levels in those treated with oral hypoglycemic agents, and higher levels in those treated with insulin. HbF and HbA1c levels were correlated in type 1 diabetes (R2 = 0.57, P<0.0001) and type 2 diabetes (R2 = 0.58, P<0.0001) subjects. Following intense treatment, twelve diabetic patients showed significant improvement both in HbA1c and HbF values. We conclude that increased HbF levels reflect poor metabolic control in subjects with diabetes mellitus.
Resumo:
The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO) levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1) synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits) containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.