275 resultados para resíduo sólido industrial
Resumo:
The thermal decomposition of hydroxyl-terminated polybutadiene (HTPB)/ammonium nitrate (AN) based propellants, so called smokeless formulations, and raw materials were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The thermoanalytical profile of different components and of propellant were evaluated and the Arrhenius parameters for the thermal decomposition of the propellant sample were determined by the Ozawa method. The kinetic parameters of the thermal decomposition of propellant samples were determined by DSC measurements. The values obtained for activation energy (Ea) and pre-exponential factor were 163 kJ mol-1 and 1.94x10(6) min-1.
Resumo:
The performances of eight kinds of insulators from electrical distribution lines in Salvador-BA, Brazil, were evaluated considering the chemical and physical local environmental pollution. The parameters that were chosen as characteristic for the insulators' properties were leakage current and partial electrical discharge. A data storage processing system and a communication link to the lab were built for data acquisition. The results show that the main contribution to the poor performance of the insulators is settleable magnetite particulate matter on the insulator in addition to the long term wetness time, t4.
Resumo:
Potassium carbonate, or potash, was the most important industrial chemical of the 18th century. It was essential for producing glass, soap, saltpeter, dyes, several drugs, and also used for bleaching linens, paper, and sugar. We examine here a book in which Brazilian author José Mariano da Conceição Veloso gathered his translations into Portuguese of English and French articles, letters, patents, and pamphlets with instructions on how to prepare potash. We discuss especially his version of Richard Watson's essay entitled 'Of saline substances', and Veloso's own 'Flora Alographica', a description of the Brazilian plants that could be used to prepare potash.
Resumo:
This study explores the similarities between solid and liquid acid catalysts highlighting the advantages and the main challenges of heterogeneous catalytic processes. We describe the main developments in technical procedures like selection of compounds and reaction models involved in: increasing acidity, characterization of solid acidity and in coke formation.
Resumo:
The importance of chitosan has grown significantly over the last two decades due to its renewable and biodegradable source, and also because of the recent increase in the knowledge of its functionality in the technological and biomedical applications. The present article reviews the biopolymer chitosan and its derivatives as versatile biomaterials for potential drug delivery systems, as well as tissue engineering applications, analgesia and treatment of arthritis.
Resumo:
The new millennium is marked by a growing search for renewable fuels and alternative raw materials from biomass in the petrochemicals industry. However, there are many challenges to overcome regarding technological and human resources aspects. In this scenario, cashew nut oil, which is rich in natural phenols, is considered to be very promising for the development of synthetic and functional products and as a feedstock for production of fine chemicals and a wide variety of new materials.
Resumo:
This paper is focused on a review of the design features and the electrochemistry characterization of anode-supported planar SOFC. Studies and results of metallic alloy interconnectors and recovery for protection against corrosion and for contact layer are showed. Moreover a discussion of examples of measurements of impedance spectrometry, according to the literature and our experimental results are made. For the anode supported fuel cells the power density varies from 0.1 to 0.5 Wcm², according to results in the literature (showed in this paper). For electrolyte supported fuel cell the power density can be 10 Wcm-2 for high temperatures. An English-Portuguese glossary of most used terms in SOFC stack is given for greater clarity and to introduce new terms to the reader.
Resumo:
The present paper aims to interpret the SO2 diffusion mechanism process for two different limestones: a calcite and a dolomite. In previous study, the apparent activation energies for sulfation reaction were between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite. Using nitrogen porosimetry it was possible to observe that the dolomite presents mesopores of 0.03 μm, while the calcite presents mesopores of 0.01 μm. The evaluation of limestones porous structure together with their kinetic parameters, allowed concluding that the diffusion mechanism follows Fick law and Knudsen law for dolomite and calcite, respectively.
Resumo:
Surface sediments from the River São Francisco were analyzed to investigate the impact, due to the presence of metals (Cd, Cu, Pb, Zn) in wastes from a metallurgical industry in the city of Três Marias/MG, Brazil. The concentrations and geochemical associations of Pb, Zn and trace metals associated with the minerals employed in zinc production were measured. Sediments close to discharge locations were highly contaminated with Pb (332-512 μg g-1) and Zn (7872-10780 μg g-1), with values decreasing rapidly due to dilution and hydraulic sorting. Evaluation of toxicity according to the Consensus-based Sediment Quality Guidelines indicated for Cd, Pb and Zn a high probability of adverse effects on aquatic biota at these sites.
Resumo:
A new electroanalytical method coupling TLC-DPV in solid state was developed for quantitative determination of phytoantioxidants with medicinal purpose, e.g. rosmarinic acid (RA) in samples of phytopharmaceuticals, e.g. rosemary (Rosmarinus officinalis L.). The method showed to be feasible, presenting linearity in concentrations ranging from 0.694 x 10-3 to 9.526 x 10-3 mol L-1 (r = 0.9945), good sensibility, selectivity, reproducibility, repeatability, agility and affordable cost. The concentrations of RA in different extracts of rosemary ranged from 0.05 to 0.52 (% w/w), presenting high recovery levels when compared to HPLC.
Resumo:
The earth diatomite is a material used by the industries in the filtration process and clarification of the beer. This material presents a reduced useful life due to the blockages of their pores during the filtration process. The objective of this work was to reactivate the properties of filtration of the earth diatomite, saturated with organic matter during the filtration stage, starting from a controlled thermal treatment. The obtained results demonstrated that the earth diatomite saturated with organic matter submitted to a controlled thermal treatment has their filtration properties reactivated, could be reused in the beer production process.
Resumo:
Chitosan, poly[β-(1-4)-linked-2-amino-2-deoxy-D-glucose], is the N-deacetylated product of chitin which is a major component of arthropod and crustacean shells such as lobsters, crabs, shrimps, and cuttlefishes. In addition, chitosan has many significant biological and chemical properties such as biodegradability, biocompatibility and bioactivity as well as polycationic properties. Thus, it has been widely used in many industrial and biomedical applications including wastewater treatment, chromatographic support, carriers for controlled drug delivery and enzyme immobilization. This review is an insight into the exploitation of utilization of chitosan based-supports in different geometrical configurations on the immobilization of enzymes by different protocols for further application in biotransformation reactions.
Resumo:
A sugar cane mill is at the present moment a modest biorefinery producing few products such as sugar, ethanol and polyhydroxybutyrate (PHB). In the near future, this mill can expand its production using several renewable feedstock's to produce biofuels and high value biobased chemicals. However, the choice of appropriate products for addition to the portfolio is challenged by a lack of broad-based conversion technology coupled with a plethora of potential targets. The intent of this revision was to catalyze research efforts to expand the list of products and to present an updated evaluation of potential target structures for chemical production.
Resumo:
The use of probes, such as paramagnetic species diluted in diamagnetic materials in EPR spectroscopy, and mathematical tools such, as the Kubelka-Munk function in DRUV-VIS spectroscopy are strategies in the analysis of complex mixtures of solid materials. The results obtained here show that the solid state reaction between the complex, [VO(acac)(BMIMAPY)] [ClO4], BMIMAPY = [(bis(1-methylimidazole-2-yl)methyl)(2-(pyridyl-2-yl)ethyl) amine] and acac = acetilacetonate, with kaolinite turns possible to obtain anisotropic EPR spectrum of the complex with a reasonable level of resolution. The study by DRUV-VIS using the method of second derivative mode of the Kubelka-Munk function revealed new complex structural arrangements, a solid hitherto unknown.
Resumo:
The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 ºC in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 µm in length and with diameters of 80-200 nm, were formed.