288 resultados para energia cinética da chuva
Resumo:
The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.
Resumo:
Electron stimulated ion desorption (ESID) and degradation studies of polypyrrole doped with dodecylsulfate (PPy/DS) deposited on FTO were performed using time-of-flight mass spectrometry (TOF-MS) for ion analysis. The results suggest a strong contribution from fragments of the dodecylsulfate hydrocarbon chain to the mass spectra. In the 650-1500 eV energy range the ion yield curves show maxima at about 600, 1200 and 1400 eV, which can be related to carbon, nitrogen and oxygen-containing fragments, respectively, and interpreted in terms of the Auger Stimulated Ion Desorption (ASID) mechanism. Degradation studies indicate rapid loss of heavier hydrocarbons and an increase of bulk and substrate fragments. Some degradation profiles suggest formation of new species.
Resumo:
Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process). Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.
Resumo:
Photosynthetic microorganism cultures, such as microalgae, represent one of the alternatives for fossil CO2 emissions mitigation. Carbon supply is the major cost component in microalgal cultures. Aiming to enhance the dissolved inorganic carbon uptake efficiency in microalgal cultures, Spirulina sp LEB-18 was cultivated in mediums containing NaHCO3 concentrations ranging from 2.8 to 100 g L-1. Results indicated that lower dissolved inorganic carbon concentratios (2.8 g L-1 NaHCO3) produce higher growth parameters (Xmax = 0.75 g L-1; Pmax = 0.145 g L-1 d-1; µmax = 0.254 d-1) and lower carbon losses (13.61%). At 50 g L-1 of NaHCO3 cell growth was inhibited and carbon losses reached 38.73%.
Resumo:
Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.
Resumo:
The cycle of fossil fuels as an energy source for mankind is approaching its end. Finite resources, coupled with greenhouse gas, have led to an increased effort in the search for alternative renewable energy sources. Brazil has a leading position, due to a 46% participation of renewable sources in its primary energy supply, compared to the global average of 12%. The expansion of the renewable sources in Brazil depends on medium and long term planning, and a large volume of investments. The present financial crisis will have major effects in the energy market. Despite a negative initial impact, it is expected that the rearrangement of the financial system will ultimately lead to an expansion in the use of renewable energy sources. Brazil is a tropical country, with the largest biodiversity in our planet and excellent conditions to expand the use of all forms of renewable sources.
Resumo:
Rainfall samples collected in the downtown area of São Paulo city, during 2003, exhibited average concentrations of cadmium, lead and copper of 1.33, 8.52 and 49.5 nmol L-1, respectively. Among the major ions, NH4+ was the predominant species followed by NO3-, SO4(2-) and Ca2+, with volume weighed mean (VWM) concentrations of 37.1, 20.1, 11.9 and 10.8 µmol L-1, respectively. All the determined species showed high inter-events variability, including free H+ ions whose VWM concentration was 4.03 µmol L-1, corresponding to a pH value of 5.39.
Resumo:
The removal study was conducted using 1.00 g of the rice husk ash (RHA) and 20.0 mL solution with concentrations in the range of 10-1000 mg/L of Zn(II). The influence of contact time, initial metal concentration, agitation and pH of the removal process was investigated. Superior removals to 95% were obtained at the end of 24 h of contact. The agitation increased in 20% the removal of Zn(II), being needed only 5 min to reach the equilibrium. The adsorption process was studied by the models of isotherms of Langmuir, Freundlich and BET, obtaining results of R L and 1/n for a process favorable of adsorption. BET isotherm best represents the equilibrium adsorption. The results showed that the RHA has the largest capacity and affinity for the removal of Zn(II).
Resumo:
In this paper, the effects of acrylamide (AAm), methylcellulose (MC) contents, pH and ionic strength on kinetic, network and hydrophilic properties of polyacrylamide and methylcellulose hydrogels were investigated. The hydrogels were characterized by evaluating of network [average molecular weight between crosslinks (M C), crosslink density (q) and the number of elastically effective chains (Ve)], and kinetic parameters [diffusional exponent (n), diffusion constant (k) and diffusion coefficient (D)]. Such properties were controlled by adjusting of the AAm, MC contents, pH and ionic strength factors. Due to high hydrophilicity and fast water-uptake, the PAAm-MC hydrogels can be considered as materials for potential applications in agricultural fields, mainly in controlled release of water or pesticides.
Resumo:
Biosurfactants present advantages in relation to the synthetic surfactants, as the biodegradability and low toxicity, and can be applied in the food industry, in pharmaceutical products, cosmetics and in the petroleum recovery. This paper aimed at selecting bacteria for biosurfactant production, evaluating the surface tension and the emulsifying activity and studying the fermentation process kinetics. The pure culture of Corynebacterium aquaticum showed capacity to promote emulsions formation and presented the smallest surface tension (28.8 mN m-1), and, in general, larger kinetic parameters, being selected as biosurfactant producer.
Resumo:
Rainwater samples (bulk deposition samples) were collected in Pinheiro and Viana. Rainwater pHs were higher than the range usually expected for unpolluted rain (5.0-5.6). The highest values were found in the beginning of the rainy season. High concentrations of ammonium found in the rainwater samples could probably explain the high pHs. Grazing animals and other human activities, combined with soil characteristics and climatic conditions can be the potential factors controlling the rainwater concentrations of ammonium in Baixada Maranhense.
Resumo:
Dendrochemistry is based on the determination of elements retained in tree rings, which can be useful to characterize environmental occurrences. This work shows elemental mappings obtained by EDXRF of the cross section of a tree stem. The tree is originated from a polluted area in Campinas, São Paulo. Some profiles, as the sulfur one, show variations that can be attributed to external contributions, whereas the silicon one can be inferred to a protection defense natural mechanism. Besides being simultaneous and multielementar, the main advantages here are its performance through a non-destructive sample treatment and the ease of operation of XRF equipments.
Resumo:
A software based in the Monte Carlo method have been developed aiming the teaching of important cases of mechanisms found in luminescence and in excited states decay kinetics, including: multiple decays, consecutive decays and coupled systems decays. The Monte Carlo Method allows the student to easily simulate and visualize the luminescence mechanisms, focusing on the probabilities of the related steps. The software CINESTEX was written for FreeBASIC compiler; it assumes first-order kinetics and any number of excited states, where the pathways are allowed with probabilities assigned by the user.
Resumo:
The pollutant transference among reservoirs atmosphere-hydrosphere, relevant to the atmospheric chemistry, depends upon scavenging coefficient (Λ) calculus, which depends on the raindrop size distribution as well as on the rainfall systems, both different to each locality. In this work, the Λ calculus will be evaluated to gas SO2 and particulate matter fine and coarse among five sites in Germany and two in Brazil. The results show three possible classifications in function of Λ, comparable to literature, however with a greater range due to the differences of rainfall system sites. This preliminary study supports future researches