220 resultados para Virulence
Resumo:
Bacteriocins are antibacterial, proteinaceous substances that mediate microbial dynamics. Bacteriocin production is a highly disseminated property among all major lineages of bacteria, including Shigella. In this paper, we addressed the purification and characterisation of a bacteriocin produced by a Shigella sonnei strain (SS9) isolated from a child with acute diarrhoea. The substance was purified through ammonium-sulphate precipitation and sequential steps of chromatography. The intracellular fraction obtained at 75% ammonium sulphate maintained activity following exposure to pH values from 1-11 and storage at -80ºC for more than two years and was inactivated by high temperatures and proteases. The molecular mass of the purified bacteriocin was determined by mass spectrometry to be 18.56 kDa. The N-terminal sequence of the bacteriocin did not match any other antibacterial proteins described. A putative new bacteriocin produced by S. sonnei has been detected. This bacteriocin may represent a newly described protein or a previously described protein with a newly detected function. Considering that SS9 expresses antagonism against other diarrhoeagenic bacteria, the bacteriocin may contribute to S. sonnei virulence and is potentially applicable to either preventing or controlling diarrhoeal disease.
Resumo:
Phospholipase is an important virulence factor for pathogenic fungi. In this study, we demonstrate the following: (i) the Paracoccidioides brasiliensis pld gene is preferentially expressed in mycelium cells, (ii) the plb1 gene is mostly up-regulated by infection after 6 h of co-infection of MH-S cells or during BALB/c mice lung infection, (iii) during lung infection, plb1, plc and pld gene expression are significantly increased 6-48 h post-infection compared to 56 days after infection, strongly suggesting that phospholipases play a role in the early events of infection, but not during the chronic stages of pulmonary infection by P. brasiliensis.
Resumo:
Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Resumo:
There has been a resurgence in the number of pertussis cases in Brazil and around the world. Here, the genome of a clinical Bordetella pertussis strain (Bz181) that was recently isolated in Brazil is reported. Analysis of the virulence-associated genes defining the pre- and post-vaccination lineages revealed the presence of the prn2-ptxS1A-fim3B-ptxP3 allelic profile in Bz181, which is characteristic of the current pandemic lineage. A putative metallo-β-lactamase gene presenting all of the conserved zinc-binding motifs that characterise the catalytic site was identified, in addition to a multidrug efflux pump of the RND family that could confer resistance to erythromycin, which is the antibiotic of choice for treating pertussis disease.
Resumo:
Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric diseases. Virulence factors such as VacA and CagA have been shown to increase the risk of these diseases. Studies have suggested a causal role of CagA EPIYA-C in gastric carcinogenesis and this factor has been shown to be geographically diverse. We investigated the number of CagA EPIYA motifs and the vacA i genotypes in H. pylori strains from asymptomatic children. We included samples from 40 infected children (18 females and 22 males), extracted DNA directly from the gastric mucus/juice (obtained using the string procedure) and analysed the DNA using polymerase chain reaction and DNA sequencing. The vacA i1 genotype was present in 30 (75%) samples, the i2 allele was present in nine (22.5%) samples and both alleles were present in one (2.5%) sample. The cagA-positive samples showed distinct patterns in the 3’ variable region of cagA and 18 of the 30 (60%) strains contained 1 EPIYA-C motif, whereas 12 (40%) strains contained two EPIYA-C motifs. We confirmed that the studied population was colonised early by the most virulent H. pylori strains, as demonstrated by the high frequency of the vacA i1 allele and the high number of EPIYA-C motifs. Therefore, asymptomatic children from an urban community in Fortaleza in northeastern Brazil are frequently colonised with the most virulent H. pylori strains.
Resumo:
Corynebacterium striatum is a potentially pathogenic microorganism that causes nosocomial outbreaks. However, little is known about its virulence factors that may contribute to healthcare-associated infections (HAIs). We investigated the biofilm production on abiotic surfaces of multidrug-resistant (MDR) and multidrug-susceptible (MDS) strains of C. striatum of pulsed-field gel electrophoresis types I-MDR, II-MDR, III-MDS and IV-MDS isolated during a nosocomial outbreak in Rio de Janeiro, Brazil. The results showed that C. striatum was able to adhere to hydrophilic and hydrophobic abiotic surfaces. The C. striatum1987/I-MDR strain, predominantly isolated from patients undergoing endotracheal intubation procedures, showed the greatest ability to adhere to all surfaces. C. striatumbound fibrinogen to its surface, which contributed to biofilm formation. Scanning electron microscopy showed the production of mature biofilms on polyurethane catheters by all pulsotypes. In conclusion, biofilm production may contribute to the establishment of HAIs caused by C. striatum.
Resumo:
The fungal strain Paracoccidioides brasiliensisremains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensismolecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensisuses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
The objective of this work was to characterize 79 Phytophthora infestans isolates collected in tomato (Solanum lycopersicum) fields, as to mating type, mefenoxam sensitivity, and pathotype composition. The isolates were sampled in 2006 and 2007 in seven Brazilian states as well as in the Distrito Federal. They were characterised as to mating type (n=79), sensitivity to fungicide mefenoxam (n=79), and virulence to three major resistance genes Ph-1, Ph-2, and Ph-3/Ph-4 (n=62). All isolates were of the mating type A1. Resistant isolates were detected in all sampled states, and its average frequency was superior to 50%. No difference was detected in pathotype diversity, neither between subpopulations collected in 2006 and 2007 nor between isolates grouped as resistant or intermediately sensitive to mefenoxam. All major resistance genes were overcome at different frequencies: Ph-1, 88.7%; Ph-2, 64.5%; and Ph-3/Ph-4, 25.8%. Isolates with virulence genes able to overcome all major resistance genes were detected at low frequencies. Tomato breeding programs in Brazil must avoid the development of cultivars with resistance based exclusively on major genes.
Resumo:
Even though resistance is the most promising tactic for root-knot nematode management on soybean (Glycine max), virulent biotypes may occur and be selected on specific resistant plant genotypes. In the present study, reproduction rate of Meloidogyne arenaria race 1 increased after four sequences of continuous culture of the parasite on resistant soybean genotypes.
Resumo:
Mixtures of races of Colletotrichum graminicola, causing sorghum (Sorghum bicolor) anthracnose and differing in their virulence range, were inoculated for five and six generations on the susceptible sorghum cultivar BR009 (Tx623), in two experiments in a greenhouse. In each generation a sample of 50 single spore isolates was obtained and inoculated on a standard differential set to determine the proportion of each race in the mixture. Isolates of the race 30A, with the narrowest virulence range, predominated over isolates of the more complex races 31B, 31C and 31E indicating the existence of differences in the survival ability among races of this pathogen.
Resumo:
The main objective of this work was to evaluate the variability of the southern rust pathogen Puccinia polysora in Brazil, based on its virulence on a set of maize (Zea mays) cultivars. Sixty single pustule isolates, from different areas of occurrence of southern rust, were evaluated for their virulence to 50 maize experimental hybrids. Six cultivars showed a clear distinction between susceptible and resistant reaction, and were used to characterize the variability of the pathogen. Seventeen virulence patterns were identified among the 60 isolates tested. The most frequent virulence patterns identified, were observed in all locations of sampling, which suggests the absence of geographical differentiation among prevalent populations of P. polysora in Brazil.
Resumo:
A study was undertaken to examine the pathogenic diversity of Pyricularia grisea isolates retrieved from 14 upland rice (Oryza sativa) cultivars in experimental plots during a period of five years. Inoculations were performed on 32 genotypes with 85 monoconidial isolates under controlled greenhouse conditions. Based on the reaction pattern of eight international differentials, eleven pathotypes of P. grisea were identified. The predominant international races or pathotypes were IB-9 (56.4%), IB-1 (16.4%) and IB-41 (11.8%). A set of eight commercial upland rice cultivars ('Carajás', 'Confiança', 'Maravilha', 'Primavera', 'Progresso', 'Caiapó', 'IAC-47', 'IAC-201') was utilized as additional differentials for describing the virulence pattern of P. grisea. Twenty-six Brazilian pathotypes were identified on the basis of disease reaction on these differentials, in contrast to the 11 international pathotypes. The most predominant Brazilian pathotypes, BB-21 and BB-41 were represented by 28.2% and 17.6% of the isolates tested, respectively. Isolates virulent and avirulent to cultivar 'Primavera' were encountered within the pathotype IB-1. Utilizing Brazilian cultivars as differentials, the 14 isolates of the pathotype IB-1could be further classified into eight local pathotypes, BB-41, BB-13, BB-21, BB-9, BB-29, BB-61, BD-9 and BG-1. Virulence to improved rice cultivars 'Canastra', 'Confiança', 'Carisma', 'Maravilha', 'Primavera' and 'Bonança' was frequent in pathogen population. Some of the Brazilian pathotypes that showed differential reaction on commercial rice cultivars could be utilized for incorporating resistance genes in susceptible cultivars improved for grain quality, by conventional breeding methods.
Resumo:
An epidemic of rice (Oryza sativa) blast occurred on cultivars Epagri 108 and 109 in the municipalities of Lagoa da Confusão and Duerê in the State of Tocantins, during the rice-growing season 1998-99. DNA fingerprinting and virulence phenotype analysis were utilized to determine the diversity of Pyricularia grisea isolates collected from these cultivars in one epidemic year. Rep-PCR analysis of isolates was done by using two primer sequences from Pot2. Two distinct fingerprint groups or lineages were identified among 53 isolates collected from nine different commercial fields. The virulence pattern of isolates retrieved from these two cultivars was analyzed in artificial inoculation tests utilizing 32 genotypes in the greenhouse. A dendrogram constructed from virulence phenotype data showed a single group considering 77% similarity level. The predominant pathotype IB-45 was represented by 47 of the 53 isolates corresponding to 83%. Four other pathotypes (IB-1, IB-9, IB-13 and IB-41) were identified at random among the isolates from these cultivars. There was no relation between rep-PCR grouping and pathotypes. The results showed that the isolates of P. grisea recovered from cultivars Epagri108 and 109 in farmers' fields had narrow phenotypic and genetic diversity. The blast outbreak on these two cultivars one year after their introduction could be attributed to the new pathotype IB-45 or its increase, which was hitherto existing in low frequency.