220 resultados para Urban use of wind turbines
Resumo:
The effect of the human immunodeficiency virus (HIV) infection on IgG production against purified protein derivative (PPD) and 2,3-diacil-trehalose (SL-IV) was investigated by an enzyme-linked immunosorbent assay (ELISA) test. Comparison between the antigens showed that immunocompetent patients produce preferentially antibodies to SL-IV than to PPD (73.3% versus 63.3%). Combination of these results showed an increase of the sensitivity to 80%, which decreased over the spectrum of immunodepression caused by HIV. In the tuberculous HIV seropositive group the sensitivities of SL-IV and PPD were 36.4% versus 40% and 0% versus 22.2% in the tuberculosis/acquired immunodeficiency syndrome (TB/AIDS) group. Combination of these results gave respectively 54.5% and 20%, showing that serological tests have limited value for diagnosis of tuberculosis in HIV infected patients. High antibody levels were observed in HIV seropositive asymptomatic group, but only two individuals were positive for both antigens. In the follow up, one of them developed tuberculous lymphadenitis, indicating that further work is needed to access the value of serological tests in predicting tuberculosis in HIV infected individuals.
Resumo:
Discs of polyvinyl alcohol cross-linked with glutaraldehyde were synthesized under acid catalysis (H2SO4). Then, the antigen F1 purified from Yersinia pestis was covalently linked to this modified polymer. Afterwards, an enzyme-linked immunosorbent assay (ELISA) was established for the diagnosis of plague in rabbit and human. The best conditions for the method were achieved by using 1.3 ¼g of F1 prepared in 0.067 M phosphate buffer, pH 7.2, containing 1 M NaCl (PBS); anti-IgG peroxidase conjugate diluted 6,000 times and as a blocking agent 3% w/v skim milk in PBS. The titration of positive rabbit serum according to this procedure detected antibody concentrations up to 1:12,800 times. The present method, the conventional ELISA and passive haemagglutination assay are compared.
Resumo:
This study was performed in an urban neighborhood of the capital city of the province of San Juan, Argentina. Erected as a housing complex, the place consists of 768 flats distributed in buildings of three and seven floors each. A survey was carried out in 33% of the dwellings, enquiring about the number of Triatoma infestans found indoors, stage of the bug development - nymph or adult - and how these insects had entered their homes. Adult T.infestans were found on all floors; 163 people (64%) had found them at least once, and 130 (51%) several times. Dispersal flight seems to have been the main mechanism of infestation by adult bugs in this area, and a total of 51% of the surveyed inhabitants reported that the insects had flown into their flats.
Resumo:
The genus Leishmania includes 30 described species which infect a wide variety of mammalian hosts. The precise identification of leishmanial parasites at the species level is very important in order to determine whether an organism, causing the disease in a given area, is of the same biotype as that found in suspected mammalian reservoirs. The objectives of the present study were (1) to identify leishmanial parasites isolated from humans and wild rodents from the State of Campeche, an endemic focus of localized cutaneous leishmaniasis (LCL) in southern Mexico, using an indirect immunofluorescent assay (IFA) with monoclonal antibodies (Mabs); and (2) to determine if the parasites of the two types of hosts were of the same biotype. All the wild rodents (six Ototylomys phyllotis, eight Oryzomys melanotis, five Peromyscus yucatanicus and two Sigmodon hispidus) and 96% (24/25) of the human isolates were identified as Leishmania (L.) mexicana confirming that this specific LCL focus is a wild zoonosis. The presence of one human isolate of L. (Viannia) braziliensis in the State of Campeche, confirmed the importance of an accurate taxonomic identification at species level.
Resumo:
Bacillus spp. based larvides are increasingly replacing, with numerous advantages, chemical insecticides in programmes for controlling black fly and mosquito populations. Brazil was among the pioneers in adopting Bacillus thuringiensis israelensis (B.t.i) to control black flies. However, the major current mosquito control programme in Brazil, the Programme for Eradication of Aedes aegypti launched in 1997, only recently decided to replace temephos by B.t.i based larvicides, in the State of Rio de Janeiro. In the last decade, works developed by research groups in Brazilian institutions have generated a significant contribution to this subject through the isolation of B. sphaericus new strains, the development of new products and the implementation of field trials of Bacillus efficacy against mosquito species under different environmental conditions.
Resumo:
One hundred and thirty cases of diarrhea and 43 age-matched controls, 0 to 5 years old, were studied in a pediatric outpatient unit from a poor peri urban area of Porto Velho, Rondônia. Eighty percent of diarrheal cases were observed in the groups under 2 years of age. Rotavirus (19.2%) was the most frequent enteropathogen associated with diarrhea, followed by Shigella flexneri (6.15%) and S. sonnei (1.5%) and Salmonella sp. (6.9%). Four cases of E. coli enterotoxigenic infections (3.1%), E. coli enteropathogenic (EPEC)(2.3%) one case of E. coli enteroinvasive infection (0.8%) and one case of Yersinia enterocolitica (0.8%) were also identified. Mixed infections were frequent, associating rotavirus, EPEC and Salmonella sp. with Entamoeba histolytica and Giardia lamblia.
Resumo:
The use of yellow fever (YF) virus 17D strain for vaccine production adapted in Brazil since its introduction in 1937 was reviewed. This was possible due to the availability of official records of vaccine production. The retrieved data highlight the simultaneous use of several serially passaged 17D substrain viruses for both inocula and vaccine preparation that allowed uninterrupted production. Substitution of these substrain viruses became possible with the experience gained during quality control and human vaccination. Post-vaccinal complications in humans and the failure of some viruses in quality control tests (neurovirulence for monkeys) indicated that variables needed to be reduced during vaccine production, leading to the development of the seed lot system. The 17DD substrain, still used today, was the most frequently used substrain and the most reliable in terms of safety and efficacy. For this reason, it is possible to derive an infectious cDNA clone of this substrain combined with production in cell culture that could be used to direct the expression of heterologous antigens and lead to the development of new live vaccines.
Resumo:
Helicobacter pylori is the most common gastric bacteria of human beings. Animal-borne helicobacter have been associated with gastritis, ulceration, and gastric mucosa-associated lymphoid-tissue lymphoma in people. We attempted to identify the species of Helicobacter spp. that infect human beings in north Paraná, Brazil. Samples of gastric mucosa from 38 dyspeptic patients were analyzed by optic microscopy on silver stained slides, polimerase chain reaction (PCR), and enzymatic cleavage. Genus and species-specific primers to H. pylori, H. heilmannii, H. felis, and consensual primers to H. bizzozeronii or H. salomonis were used. The PCR products were submitted to enzymatic cleavage by VspI (Helicobacter spp. product) and HinfI (species products) enzymes. Thirty-two out of 38 patients evaluated had 3.2 to 5 µm long bacteria that resembled H. pylori in Warthin-Starry stained slides and were positive to the genus Helicobacter by PCR. In 30 of these patients the bacteria were identified as H. pylori. Two samples positive by silver stain were negative to all species tested by PCR. None of the 38 samples was positive to animal-origin helicobacter species. These results show that PCR and enzymatic restriction are practical methods to identify the species of helicobacters present in gastric mucosa of human beings. People in north Paraná appear to be infected mostly with H. pylori.
Resumo:
The aim of this study was to evaluate the use of one of the molecular typing methods such as PCR (polymerase chain reaction) following by RFLP (restriction fragment length polymorphism) analysis in the identification of Candida species and then to differentiate the identified azole susceptible and resistant Candida albicans strains by using AP-PCR (arbitrarily primed-polymerase chain reaction). The identification of Candida species by PCR and RFLP analysis was based on the size and primary structural variation of rDNA intergenic spacer regions (ITS). Forty-four clinical Candida isolates comprising 5 species were included to the study. The amplification products were digested individually with 3 different restriction enzymes: HaeIII, DdeI, and BfaI. All the isolates tested yielded the expected band patterns by PCR and RFLP analysis. The results obtained from this study demonstrate that Candida species can be differentiated as C. albicans and non-C. albicans strains only by using HaeIII restriction enzyme and BfaI maintains the differentiation of these non-C. albicans species. After identification Candida species with RFLP analysis, C. albicans strains were included to the AP-PCR test. By using AP-PCR, fluconazole susceptible and resistant strains were differentiated. Nine fluconazole susceptible and 24 fluconazole resistant C. albicans were included to the study. Fluconazole resistant strains had more bands when evaluating with the agarose gel electrophoresis but there were no specific discriminatory band patterns to warrant the differentiation of the resistance. The identification of Candida species with the amplification of intergenic spacer region and RFLP analysis is a practical, short, and a reliable method when comparing to the conventional time-consuming Candida species identification methods. The fluconazole susceptibility testing with AP-PCR seems to be a promising method but further studies must be performed for more specific results.
Resumo:
The specific identification of Lymnaeid snails is based on a comparison of morphological characters of the shell, radula, renal and reproductive organs. However, the identification is complicated by dissection process, intra and interspecific similarity and variability of morphological characters. In the present study, polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) techniques targeted to the first and second internal transcribed spacers (ITS1 and ITS2) rDNA and to the mitochondrial 16S ribosomal gene (16S rDNAmt) were used to differentiate the species Lymnaea columella, L. viatrix, and L. diaphana from some localities of Brazil, Argentina, and Uruguay as well as to verify whether the molecular results corroborates the classical morphological method.PCR-RFLP analysis of the ITS1, ITS2, and 16S using 12 restriction enzymes revealed characteristic patterns for L. columella and L. diaphana which were concordant with the classical morphology. On the other hand, for L. viatrix populations a number of 1 to 6 profiles were generated while morphology provided the species pattern results.
Resumo:
Paired samples of cerebrospinal fluid (CSF) and serum of 30 patients - 10 with active, 10 with inactive neurocysticercosis (NCC), and 10 control subjects - were evaluated by enzyme-linked immunosorbent assay (ELISA) using two Taenia crassiceps metacestode extracts as antigen in order to detect IgG antibodies. In active NCC, high levels of IgG were detected (p < 0.05). The CSF samples showed 80% (CI 72-88) of reactivity in the saline extract (S) and 90% (CI 84-95) in sodium dodecyl sulphate (SDS) and the serum samples were reactive in 90% (CI 84-95) and 100% (CI 98-100) in the S and SDS antigenic extracts, respectively. The use of the paired samples of CSF and serum in active NCC showed equivalent results suggesting that the serum samples could be used as a screening in those patients whose CSF puncture is counter-indicated.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.