180 resultados para Three Forks Shale
Resumo:
An analytical procedure to quantify 3-benzophenone, octylmethoxycinnamate and octylsalicylate was validated and employed to assess these ultraviolet filters in sunscreen formulations and from skin penetration studies. The effect of the vehicle on the skin retention of these filters was investigated. HPLC and extraction procedure were found to be reliable when obtaining data for the sunscreen formulations and for evaluation skin penetration. The results demonstrated that a cream gel generated higher epidermal concentrations of these filters than a lotion or cream-based formulation. Additionally, when comparing the skin retentions of each filter using the same formulation, 3-benzophenone showed the highest skin retention.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
The Annonaceae family is distributed throughout Neotropical regions of the world. In Brazil, it covers nearly all natural formations particularly Annona, Xylopia and Polyalthia and is characterized chemically by the production of sources of terpenoids (mainly diterpenes), alkaloids, steroids, polyphenols and, flavonoids. Studies from 13C NMR data of diterpenes related with their botanical occurrence were used to generate self-organizing maps (SOM). Results corroborate those in the literature obtained from morphological and molecular data for three genera and the model can be used to project other diterpenes. Therefore, the model produced can predict which genera are likely to contain a compound.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
An effective method for the rapid separation and purification of three stilbenes from the radix of Polygonum cillinerve (Nakai) Ohwl by macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was successfully established. In the present study, a two-phase solvent system composed of chloroform-n-butanol-methanol-water (4:1:4:2, v/v/v/v) was used for HSCCC separation. A one-step separation in 4 h from 150 mg of crude extract produced 26.3 mg of trans-resveratrol-3-O-glucoside, 42.0 mg of pieceid-2"-O-gallate, and 17.9 mg of trans-resveratrol with purities of 99.1%, 97.8%, and 99.4%, respectively, as determined by high-performance liquid chromatography (HPLC). The chemical structures of these compounds were identified by nuclear magnetic resonance (NMR) spectroscopy.
Resumo:
When grown in monoculture, Antilles cherry (Malpighia glabra) plants have been affected by diseases which cause fruits malformation and spotting, reducing their value for market. From 1999 on, three new diseases characterised by leaf spot and fall of leaves have been observed in plantations located in Santa Izabel do Pará and Igarapé Açu counties. After isolation and pathogenicity tests on leaves of Antilles cherry plants, the isolates were identified as Calonectria ilicicola (anamorph: Cylindrocladium parasiticum) which causes large leaf spots reaching up to 7 cm long, brownish in colour, coalescent, scorching large leaf areas and causing 50% of leaf fall; Corynespora cassiicola, which provokes irregularly shaped, necrotic leaf spots with dark brown margins and white centers, surrounded by a yellow halo; and Myrothecium roridum which causes greyish target spots. Corynespora cassiicola has been reported causing leaf spots on different hosts in the Amazon region, while C. cassiicola has been recorded infecting Antilles cherry besides other hosts in the States of Maranhão and Pará.
Resumo:
LMV is one of the most important pathogens of lettuce worldwide. Based on their ability to overcome the resistance genes mo1¹ and mo1² in lettuce, isolates can be divided in two types: LMV-Most, which can infect and are seed-borne in cultivars containing the mo1 gene and LMV-Common, which do not cause symptoms on these cultivars and are seed transmitted only in susceptible cultivars. To evaluate the occurrence of these two types of LMV isolates, a survey was carried out during 2002-2005 in three lettuce production areas from São Paulo State. Total RNA was used for the diagnosis of LMV isolates by RT-PCR using universal primers for the variable N-terminus of the capsid protein, in the 3' end of the genome. Positives samples were analyzed by a second RT-PCR using specifics primers for LMV-Most isolates designed to amplify a fragment from the central region (CI-VPg) of the genome. A total of 1362 samples showing mosaic symptoms were collected and 504 (37.29 %) were positives for LMV. On susceptible lettuce cultivars, LMV-Common was prevalent (77.3%). LMV-Most was found frequently associated with tolerant (mo1¹) lettuce cultivars. Susceptible cultivars correspond today for most of the area of lettuce production. So, despite the ability of LMV-Most isolates to overcome the resistance provided by the recessive mo1¹ gene, they are not prevalent in the conditions of São Paulo State.
Resumo:
Clonal cleaning, followed by pre-immunization with protective complexes of Citrus tristeza virus(CTV), allowed the commercial cultivation of Pêra sweet orange, a variety that has great importance for Brazilian citriculture but is sensitive to the virus. The use of mild protective isolates in other citrus varieties, even those more tolerant to CTV, can also be of interest to prevent the spread of severe isolates. The aim of this study was to characterize, by means of SSCP (Single Strand Conformational Polymorphism) analysis of the coat protein gene, CTV isolates present in plants of the sweet orange cultivars Pêra, Hamlin and Valencia propagated from four budwood sources: 1) old lines, 2) nucellar lines, 3) shoot-tip-grafted lines, and 4) shoot-tip-grafted lines pre-immunized with the mild CTV protective isolate 'PIAC'. We also evaluated the correlation of the obtained SSCP patterns to stem pitting intensity, tree vigor and fruit yield. SSCP results showed low genetic diversity among the isolates present in different trees of the same variety and same budwood source and, in some cases, in different budwood sources and varieties. Considering tristeza symptoms, lower intensity was noted for plants of new, shoot-tip-grafted and pre-immunized shoot-tip-grafted lines, compared to old lines of the three varieties. The observed SSCP patterns and symptomatology suggested that more severe CTV complexes infect the plants of old lines of all three varieties. The protective complex stability was observed in the SSCP patterns of CTV isolates of some shoot-tip-grafted and pre-immunized clones. It was concluded that the changes detected in other electrophoretic profiles of this treatment did not cause loss of the protective capacity of CTV isolate 'PIAC' inoculated in the pre-immunization.
Resumo:
Plants react to changes in light and hydrological conditions in terms of quantity and composition of chloroplastidic pigments, which affects the photosynthetic properties and consequently the accumulation of plant biomass. Thus, the chloroplastidic pigment concentration and chlorophyll a fluorescence of three Amazonian species (Bertholletia excelsa, Carapa guianensis e Dipteryx odorata) were investigated in sun and shade leaves form the tree crown collected during two distinct periods of precipitation (dry and rainy seasons). Pigment contents were determined by spectrophotometry and fluorescence variables were determined using a portable fluorometer. The results demonstrated that the species showed high concentrations of Chl a, Chl b e Chl total during the wet season in relation to the dry season, especially in shade leaves. A higher concentration of carotenoids was found in B. excelsa, when compared with leaves of C. guianensis and D. odorata. In leaves of B. excelsa and D. odorata no significant difference was found in relation to the photochemistry of photosystem II (Fv/Fm) between the wet and dry seasons. In conclusion, the three species react differently to variations in the light and precipitation conditions regarding light capture, aspects that might be considered in the management of forest plantations.
Resumo:
ABSTRACT This study investigates the flowering and pollinators of the floral morphs of three co-occurring distylous species, Psychotria conjugens Müll, P. hastisepala Müll. Arg. and P. sessilis Vell., in two consecutive flowering seasons in an Atlantic Forest fragment in southeastern Brazil. The species have diurnal, cream-colored, tubular, nectariferous flowers and their flowering occurs in the rainy season, from September to April, with little or no overlapping between species, characterizing a staggered flowering. The flowering of the long-and short-styled floral morphs of each species was synchronous, but the number of open flowers per day per morph tended to vary in each flowering season. These numbers were higher in P. sessilis and P. conjugens and, probably, resulted in higher total numbers of visits on its flowers (up to 1084 visits in P. sessilis and 756 in P. conjugens), compared to that observed in P. hastisepala (up to 71). There was a higher frequency of visits to long-styled flowers of all species. The bee Ariphanarthra palpalis was a common pollinator to all species. This bee is native to Brazil, solitary, considered relatively rare and its host plants were unknown. Other native bees (Melipona spp.) also visited the flowers of the Psychotria species. The availability of flowers with similar floral features over eight months, the staggered flowering and common pollinators appear to be part of a strategy to attract floral visitors, minimizing the competition for pollinators and then favoring the legitimate pollination of these plants.
Resumo:
ABSTRACT The species of the genus Byrsonima Rich. ex Kunth are of great medicinal and economic importance, but they are still poorly studied with respect to their propagules. This study describes, illustrates and comparse morphological aspects of the pyrenes of Byrsonima crassifolia (L.) Kunth, Byrsonima verbascifolia (L.) DC. and Byrsonima coccolobifolia Kunth occurring in areas of savannah of Boa Vista, Roraima. The pyrenes are globoid, obovoid to ovoid, with endocarp dark brown in color, with a corrugated and reticulate surface and corneous consistency. They possess distinctly septate locules with or without seeds, the outer wall of which are dark brown in color with corneous consistency and thin black inner walls also with corneous consistency. The number of locules and seeds per pyrene among the species varies. The seeds are exalbuminous, globoid, obovoid to ovoid, with a thin, smooth integument and are light-brown in color. They have radicular lobes and hypostasis. The embryo is continuous and axial with cylindrical spirally rolled cotyledons. The diameter of pyrenes of Byrsonima crassifolia is greater than in the other two species. The pyrenes of B. coccolobifolia are longer and heavier, while those of B. verbascifolia are lighter and the seeds have greater lengths, widths and thickness compared to the other two species studied. The three species have similar morphologies, differing in the size and weight of pyrenes and seeds.
Resumo:
The seedlings production is an essential part for vegetables production. Thus, this study aimed to evaluate the environment, the substrates and the containers in the development of tomato seedlings, cv. Santa crus Kada Gigante, in Aquidauana -MS, Brazil region, from October to November, 2008. Polystyrene trays with 72; 128 and 200 cells, filled with four substrates (soil; Plantmax®; coconut fiber and vermiculite) were tested in three protected environments (greenhouse; screened with Sombrite® and screened with Aluminet®). The experimental design was completely randomized, factorial scheme 3x4 (three trays x four substrates), with four replications, being analyzed individual variance analysis and joint analysis for the environments. The environment with screens (Sombrite® and Aluminet®), the trays with 72 cells and the vermiculite produced better results.
Resumo:
The potassium ion, present in great amount in the vinasse because it is a monovalent cation, has the characteristic of promoting the dispersion of clay particles, in the same way as the sodium, causing a reduction in the pore space of the soil and, in its turn, reducing its permeability. To evaluate this effect of reduction by application of vinasse to the soil, an experiment was conducted for three different soils, with the objective of evaluating the effect of the application of different doses of vinasse on hydraulic conductivity of saturated soil and verifying its possible chemical changes of these soils. For that, it was used PVC columns (in a scheme of constant head permeameter to obtain the values of hydraulic conductivity of saturated soil), filled with three soils - Dark Red Latosol (DRL), Purple Latosol (PL) and Eutrophic Red Nitossol (ERN) - , in which were applied four doses of vinasse (0, 150, 300 and 450m³ ha-1), distributed in a completely randomized design with a 3x4 factorial scheme with three replications. The results evidenced that only the Dark Red Latosol (DRL) showed a reduction in the values of hydraulic conductivity of saturated soil, and in front of the application of vinasse, up to 300m³ ha-1, it was observed an increase in the concentrations of potassium, calcium and cation exchange capacity (CEC) ions.
Resumo:
Three growing systems of Arabica coffee were evaluated under the energy perspective, in the state of Espírito Santo in Brazil. The systems are conventional cultivation (CC), cultivation with good agricultural practices (CGP) and organic farming (OF). It was made a comparison of the energy flows within these three systems to show sustainable levels of each one based on production average data of several family-farming units. Therefore, we analyzed crop yield, total energy efficiency reverse (TEER), energy efficiency of ripe coffee (EERC) and non-renewable energy efficiency (NREE). OF system had values for TEER, EERC and NREE of 3.3 4.7 and 7.9 respectively. Yet CC showed values of 1.8, 1.9 and 1.6 for TEER, EERC and NREE respectively. Furthermore, CGP presented values for TEER, EERC and NREE of 0.7, 1.3 and 1.4 respectively. The highest yield was observed in CGP, reaching an amount of 1794 kg ha-1(17,455 MJ); however, this system expends more energy than it converts. Thus, over those points, OF is the most sustainable system.