180 resultados para SUCCESSIVE H-INDEXES
Resumo:
Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.
Resumo:
Considering nitrogen mineralization (N) of soil organic matter is a key aspect for the efficient management of N fertilizers in agricultural systems. Long-term aerobic incubation is the standard technique for calibrating the chemical extraction methods used to estimate the potentially mineralizable N in soil. However, the technique is laborious, expensive and time-consuming. In this context, the aims of this study were to determine the amount of soil mineralizable N in the 0-60 cm layer and to evaluate the use of short-term anaerobic incubation instead of long-term aerobic incubation for the estimation of net N mineralization rates in soils under sugarcane. Five soils from areas without previous N fertilization were used in the layers 0-20, 20-40 and 40-60 cm. Soil samples were aerobically incubated at 35 ºC for 32 weeks or anaerobically incubated (waterlogged) at 40 ºC for seven days to determine the net soil N mineralization. The sand, silt and clay contents were highly correlated with the indexes used for predicting mineralizable N. The 0-40 cm layer was the best sampling depth for the estimation of soil mineralizable N, while in the 40-60 cm layer net N mineralization was low in both incubation procedures. Anaerobic incubation provided reliable estimates of mineralizable N in the soil that correlated well with the indexes obtained using aerobic incubation. The inclusion of the pre-existing NH4+-N content improved the reliability of the estimate of mineralizable N obtained using anaerobic incubation.
Resumo:
Successive applications of pig slurry and pig deep litter may lead to an accumulation of copper (Cu) and zinc (Zn) fractions in the soil profile. The objective of this study was to evaluate the Cu and Zn forms and accumulation in a Sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. In March 2010, eight years after initiating an experiment in Braço do Norte, Santa Catarina (SC), Brazil, on a Sandy Typic Hapludalf soil, soil samples were collected from the 0-2.5, 2.5-5.0, 5-10 and 10-15 cm layers in treatments consisting of no manure application (control) and with applications of pig slurry and deep litter at two levels: the single and double rate of N requirement for maize and black oat succession. The soil was dried, ground in an agate mortar and analyzed for Cu and Zn contents by 0.01 mol L-1 EDTA and chemically fractionated to determine Cu and Zn. The applications of Pig deep litter and slurry at doses equivalent to 90 kg ha-1 N increased the contents of available Cu and Zn in the surface soil layer, if the double of this dose was applied in pig deep litter or double this dose in pig slurry, Cu and Zn migrated to a depth of 15 cm. Copper is accumulated mainly in the organic and residual fractions, and zinc preferentially in the fraction linked to clay minerals, especially in the surface soil layers.
Resumo:
Large areas of Plinthosols with ferruginous materials such as plinthite and/or petroplinthite are fairly common in the Brazilian Amazon basin. This work was carried out to investigate the chemical behavior, mineralogical composition and weathering stage of four representative soil profiles with plinthite and petroplinthite, in Iranduba, AM (Central Amazon). Three well-drained soil profiles at high elevations were studied (P1, Plinthic Vetic Ferralsol; P2 and P3, Vetic Endopetric Plinthosol) and a contrasting poorly drained soil (P4 Haplic Plinthosol), located at low elevation. After profile descriptions, soil samples were collected from each horizon, air-dried, sieved (2 mm), and analyzed for particle-size distribution, pH, exchangeable cations (Al3+, Ca2+, Mg2+, K+, and Na+), as well as available P and total organic carbon (TOC) content. The minerals present in the clay and sand fractions, as well as in the ferruginous materials were identified by X-ray Diffraction (XRD). The weathering stage of these soils was assessed by means of Ki and Kr indexes, and the amounts of free and amorphous Fe and Al oxides by using dithionite citrate bicarbonate (DBC) and ammonium oxalate dissolution procedures, respectively. The results showed that all soils were extremely unfertile, with pH levels ranging between strong and moderate acidity, very low sum of bases and organic matter content, and of available P. The mineralogy of the soil profiles was very similar, mainly of the well-drained soils, with predominance of kaolinite and quartz in the clay and sand fractions, respectively. In the poorly-drained P4, 2:1 clay particles were also observed. These profiles can be considered highly developed according to the Ki index, however, the Ki value of P4 was higher, indicating that this soil was less developed than the others. In summary, these profiles with plinthite and petroplinthite can be characterized as highly developed and infertile soils and are, with exception of P4, well-drained.
Resumo:
In vineyards, if phosphate is applied both before planting and at intervals during growth without consideration of technical criteria, the soil P fractions may be increased and their proportions altered. This study was carried out to evaluate the accumulation of P fractions and the parameters of the adsorption isotherm in a sandy Typic Hapludalf soil in vineyards with a history of successive and excessive phosphate fertilization. In December 2010, two vineyards were selected, one 4 and the other 15 years old, in Urussanga, State of Santa Catarina (Brazil). Three trenches were dug in each area and soil was collected from the 0-5, 5-10 and 10-20 cm depth ranges. The soil samples were dried in a forced-air oven, sieved and subjected to chemical analyses, P chemical fractionation and P adsorption isotherms. Excessive phosphate fertilization, before and during cultivation, particularly in the older vineyard and, consequently, with a longer history of phosphate fertilization, increased the inorganic P concentrations to the depth of 20 cm, especially in labile fractions extracted by anion exchange resin and NaHCO3 in the non-labile fraction, as well as in the non-labile fraction extracted by 1.0 mol L-1 HCl. The application of phosphate fertilizers and the long cultivation period increased the P levels in the organic labile fraction extracted by 0.5 mol L-1 NaHCO3, and especially in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH. Phosphate fertilization of older vineyards, i.e., cultivated for 15 years, increased the amounts of P desorbed in water, indicating a risk of contamination of surface waters and groundwater. The phosphate fertilization before planting, without considering the results of soil analysis, and during cultivation, disregarding the results of soil analysis, leaf analysis and expected yield, led to a reduction in the maximum P adsorption capacity in the 0-5 cm layer of vineyard 2, indicating saturation of part of the reactive particle adsorption sites.
Resumo:
The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile.
Resumo:
The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P) content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM), Santa Maria (RS). The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf), subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC), and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.
Resumo:
ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM) as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC) and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM) contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case). Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.
Resumo:
ABSTRACT Univariate methods for diagnosing nutritional status such as the sufficiency range and the critical level for garlic crops are very susceptible to the effects of dilution and accumulation of nutrients. Therefore, this study aimed to establish bivariate and multivariate norms for this crop using the Diagnosis and Recommendation Integrated System (DRIS) and Nutritional Composition Diagnosis (CND), respectively. The criteria used were nutritional status and the sufficiency range, and then the diagnoses were compared. The study was performed in the region of Alto Paranaíba, MG, Brazil, during the crop seasons 2012 and 2013. Samples comprised 99 commercial fields of garlic, cultivated with the cultivar “Ito” and mostly established in Latossolo Vermelho-Amarelo Distrófico (Oxisol). Copper and K were the nutrients with the highest number of fields diagnosed as limiting by lack (LF) and limiting by excess (LE), respectively. The DRIS method presented greater tendency to diagnose LF, while the CND tended towards LE. The sufficiency range of both methods presented narrow ranges in relation to those suggested by the literature. Moreover, all ranges produced by the CND method provided narrower ranges than the DRIS method. The CND method showed better performance than DRIS in distinguishing crop yield covered by different diagnoses. Turning to the criterion of evaluation, the study found that nutritional status gave a better performance than sufficiency range in terms of distinguishing diagnoses regarding yield.
Resumo:
ABSTRACT Organic acids present in organic matter and, or, exudates by microorganisms and plants can increase the liberation of potassium present in minerals. The objective of this study was to characterize the residue from ornamental rocks and evaluate the release of K from these residues after the application of organic acids. The experiment was conducted under laboratory conditions and followed a 2 × 3 × 5 factorial design with three replicates. The studied factors were: two organic acids (citric acid and malic acid), three ornamental rock residues (R1, R2 and R3) and five organic acid rates (0, 5, 10, 20 and 40 mmol L-1). After agitation, K concentrations were determined in the equilibrium solution. Successive extractions were performed (1, 5, 10, 15, 30 and 60 days after the start of the experiment). The organic acids used (citric and malic) promoted the release of up to 4.86 and 4.34 % of the total K contained in the residue, respectively, reinforcing the role of organic acids in the weathering of minerals and in providing K to the soil. The K quantities were, on average, 6.1 % higher when extracted with citric acid compared to malic acid.
Resumo:
ABSTRACT The concept of soil physical quality (SPQ) is currently under discussion, and an agreement about which soil physical properties should be included in the SPQ characterization has not been reached. The objectives of this study were to evaluate the ability of SPQ indicators based on static and dynamic soil properties to assess the effects of two loosening treatments (chisel plowing to 0.20 m [ChT] and subsoiling to 0.35 m [DL]) on a soil under NT and to compare the performance of static- and dynamic-based SPQ indicators to define soil proper soil conditions for soybean yield. Soil sampling and field determinations were carried out after crop harvest. Soil water retention curve was determined using a tension table, and field infiltration was measured using a tension disc infiltrometer. Most dynamic SPQ indicators (field saturated hydraulic conductivity, K0, effective macroporosity, εma, total connectivity and macroporosity indexes [CwTP and Cwmac]) were affected by the studied treatments, and were greater for DL compared to NT and ChT (K0 values were 2.17, 2.55, and 4.37 cm h-1 for NT, ChT, and DL, respectively). However, static SPQ indicators (calculated from the water retention curve) were not capable of distinguishing effects among treatments. Crop yield was significantly lower for the DL treatment (NT: 2,400 kg ha-1; ChT: 2,358 kg ha-1; and DL: 2,105 kg ha1), in agreement with significantly higher values of the dynamic SPQ indicators, K0, εma, CwTP, and Cwmac, in this treatment. The results support the idea that SPQ indicators based on static properties are not capable of distinguishing tillage effects and predicting crop yield, whereas dynamic SPQ indicators are useful for distinguishing tillage effects and can explain differences in crop yield when used together with information on weather conditions. However, future studies, monitoring years with different weather conditions, would be useful for increasing knowledge on this topic.
Resumo:
This work investigated the effect of repeated applications on enhanced degradation of metalaxyl in two different agricultural soils used for cultivation of orange and lemon from Casa Branca and Itapetininga districts of São Paulo State, Brazil. Soil samples were collected from areas repeatedly treated with commercial ridomil 50GR for six successive years, and from other areas never exposed to this fungicide. At the laboratory, soil samples received a 14C-metalaxyl solution and its degradation was studied through radiometric techniques to measure biomineralization and recovery of extractable- and soil-bound products. Enhanced degradation was verified only in one soil, although partial degradation and mineralization of the fungicide were detected in both soils. The different rates and patterns of metalaxyl degradation in the soils were probably due to their different physical, chemical, and biological characteristics.
Resumo:
Diagnosis and Recommendation Integrated System (DRIS) applies nutrient ratios instead of the isolated concentration values of each nutrient in interpretation of tissue analysis. The objectives of this research were to establish adequate DRIS norms for 'Valencia' sweet orange irrigated commercial groves budded on three rootstocks and correlate indexes of nutrition balance with yield. Experiments were conducted in São Paulo State, Brazil. Rootstocks Rangpur lime, Caipira sweet orange, and Poncirus trifoliata, with more than six years old and yield above 40 ton ha-1 were utilized. Data referred to yield, tree spacing, rootstock and foliar concentrations of N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, and B in non fruiting terminals for each grove were processed for the years 1994 through 1998. DRIS indexes were calculated by Nick criterion for choosing the ratio order of the nutrients and Jones calculation method of the ratio functions. Indexes of nutritional balance calculated from DRIS norms presented high correlation with yield for the three scion/rootstock combinations. DRIS norms defined in this research are valid, since leaf sampling is done on non fruiting terminals and the grove is irrigated.
Resumo:
Garlic viruses often occur in mixed infections under field conditions. In this study, garlic samples collected in three geographical areas of Brazil were tested by Dot-ELISA for the detection of allexiviruses using monoclonal specific antibodies to detect Garlic virus A (GarV-A), Garlic virus B (GarV-B), Garlic virus C (GarV-C) and a polyclonal antiserum able to detect the three virus species mentioned plus Garlic virus D (GarV-D). The detected viruses were biologically isolated by successive passages through Chenopodium quinoa. Reverse Transcriptase Polimerase Chain Reaction (RT-PCR) was performed using primers designed from specific regions of the coat protein genes of Japanese allexiviruses available in the Genetic Bank of National Center of Biotechnology Information (NCBI). By these procedures, individual garlic virus genomes were isolated and sequenced. The nucleotide and amino acid sequence analysis and the one with serological data revealed the presence of three distinct allexiviruses GarV-C, GarV-D and a recently described allexivirus, named Garlic mite-borne filamentous virus (GarMbFV), in Brazil.
Resumo:
The control of whitefly Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) on okra (Abelmoschus esculentus L.) consists primarily in the use of insecticides, due to the lack of information on other mortality factors. The objective of this study was to evaluate the spatial and temporal population dynamics of the whitefly B. tabaci biotype B on two successive A. esculentus var. "Santa Cruz" plantations. Leaf chemical composition, leaf nitrogen and potassium contents, trichome density, canopy height, plant age, predators, parasitoids, total rainfall and median temperature were evaluated and their relationships with whitefly on okra were determined. Monthly number estimates of whitefly adults, nymphs (visual inspection) and eggs (magnifying lens) occurred on bottom, middle and apical parts of 30 plants/plantation (one leaf/plant). Plants senescence and natural enemies, mainly Encarsia sp., Chrysoperla spp. and Coccinellidae, were some of the factors that most contributed to whitefly reduction. The second okra plantation, 50 m apart from the first, was strongly attacked by whitefly, probably because of the insect migration from the first to the second plantation. No significant effects of the plant canopy on whitefly eggs and adults distribution were found. A higher number of whitefly nymphs was found on the medium part than on the bottom part.