214 resultados para Plants reproduction
Resumo:
The objective of this work was to evaluate the coexistence effects of coffee (Coffea arabica) with densities of sourgrass (Digitaria insularis) on crop macronutrient content and plant growth. The experiment was conducted in plots where one coffee plant was maintained in coexistence with 0 (weed-free check), 1, 2, 4, 8, and 16 sourgrass plants, using a completely randomized design with three replicates. Reduction of coffee growth and macronutrient content, except P that increased, started when the coexistence occurred with sourgrass plants in a density of 1 plant per plot. In general, macronutrient content was reduced by 18-50%, while growth characteristics were reduced by 9-41%, when coffee plants coexisted with 16 plants of sourgrass. Thus, sourgrass competition for nutrients was a strong factor limiting coffee plant growth.
Resumo:
The objective of this study was to evaluate glyphosate translocation in glyphosate-tolerant weed species (I. nil, T. procumbens and S. latifolia) compared to glyphosate-susceptible species (B. pilosa). The evaluations of 14C-glyphosate absorption and translocation were performed at 6, 12, 36 and 72 hours after treatment (HAT) in I. nil and B. pilosa, and only at 72 HAT in the species T. procumbens and S. latifolia. The plants were collected and fractionated into application leaf, other leaves, stems, and roots. In S. latifolia, approximately 88% of the glyphosate remained in the application leaf and a small amount was translocated to roots at 72 HAT. However, 75% of the herbicide applied on T. procumbens remained in the leaf that had received the treatment, with greater glyphosate translocation to the floral bud. It was concluded that the smaller amount of glyphosate observed in S. latifolia and T. procumbens may partly account for their higher tolerance to glyphosate. However, I. nil tolerance to glyphosate may be associated with other factors such as metabolization, root exudation or compartmentalization, because a large amount of the herbicide reached the roots of this species.
Resumo:
The experiment was carried out aiming to analyze the dry mass production and distribution and the content and accumulation of macronutrients in sourgrass (Digitaria insularis) plants cultivated under mineral nutrition standard conditions. Plants grew in 7-liter pots filled with sand substrate and daily irrigated with nutrient solution, being maintained under greenhouse conditions. Treatments consisted of times of evaluation (21, 35, 49, 63, 77, 91, 105, 119, and 133 days after emergence - DAE) and were arranged in a completely randomized design with four replicates. Sourgrass showed small accumulation of dry mass (0.3 g per plant) and macronutrients (3.7 mg of N per plant, 0.4 mg of P per plant, 5.6 mg of K per plant, 0.9 mg of Ca per plant, 0.7 mg of Mg per plant, and 0.3 mg of S per plant) at vegetative growth stage (< 49 DAE). Those accumulations increased mainly after 77 DAE, reaching the maximum theoretical value at 143, 135, 141, 129, 125, 120, and 128 DAE, for dry mass (12.4 g per plant), N (163.2 mg per plant), P (27.1 mg per plant), K (260.5 mg per plant), Ca (47.6 mg per plant), Mg (30.9 mg per plant), and S (13.7 mg per plant), respectively. K and N were found with higher rates and, as a consequence, they were required and accumulated in greater amounts in plant tissues of sourgrass.
Resumo:
There is little information about the selectivity of herbicides in physic nut (Jatropha curcas) in Brazil. Therefore, this study aimed to evaluate the selectivity of different doses and mixtures of paraquat and diuron in direted-spray applications in physic nut plants in greenhouse conditions. The study used a randomized block design, with five replicates. The treatments were: paraquat (200 and 600 g ha-1), diuron (1,000 and 2,000 g ha-1), paraquat + diuron (200 + 1,000 g ha-1), paraquat + diuron (200 + 2,000 g ha-1), paraquat + diuron (600 + 1,000 g ha-1), paraquat + diuron (600 + 2,000 g ha-1) and a control (no application). Directed-spray application was performed at 70 days after sowing by the lower third of the plants. The treatments of diuron and paraquat + diuron mixtures affected the growth and photosynthetic activity of physic nut plants, injuries being more pronounced at doses of diuron of 2,000 g ha‑1, while the isolated application of paraquat at doses of 200 and 600 g ha-1 showed good selectivity potential for physic nut plants.
Resumo:
The objective of this work was to investigate the injuries caused to the photosynthetic apparatus of three types of rice exposed to application of imidazolinone group herbicides. Two experiments were conducted using herbicides Imazethapyr+imazapic and Imazapyr+imazapic, in a split-plot experimental design, and a 3 x 3 factorial, with six replications. The first factor (A) consisted of the herbicide rates 0, 100 e 200 g ha-1 of Imazethapyr+imazapic and 0, 140 e 280 g ha-1 of Imazapyr+imazapic; factor B consisted of type of rice (cv. Puitá Inta CL, sensitive red rice ecotype and red rice ecotype with suspected herbicide tolerance to Imidazolinone). Chlorophyll a fluorescence parameters were evaluated in plants at 30 days after herbicide application, using a portable fluorometer (HandyPEA, Hanstech). The photosynthetic metabolism of cv. Puitá Inta CL was found to tolerate commercial dosages of both herbicides. High sensitivity to the herbicides was observed for the sensitive red rice ecotype, while the photosynthetic apparatus of red rice ecotype with suspected herbicide tolerance showed high tolerance to both herbicides applied at rates higher than the commercial rate. The application of chemical herbicides of the imidazolinone group on rice plants causes changes in the photosynthetic metabolism of plants, detected by evaluating the emission of transient chlorophyll a fluorescence. This method can be useful in helping detect resistance and/or tolerance of red rice plants to herbicides of the imidazolinone group.
Resumo:
Chlorophylls and carotenoids are the main photosynthetic pigment in plants. In the weeds, the greatest amount of photosynthetic pigments can result in high competitiveness of the species. The aim of this study was to quantify the content of photosynthetic pigments in biotypes of fleabane (Conyza bonariensis) susceptible and resistant to glyphosate, by two different methods, as well as a correlation between chlorophyll content obtained by portable and classical methodology (extractable chlorophyll). An experiment was conducted in greenhouse and laboratory, 2 x 5 factorial scheme, where factor A was equivalent to biotypes of fleabane (resistant and susceptible to glyphosate) and factor B to developmental stages plants (rosette vegetative I, II and III and reproduction). At all stages of development, fleabane plants were evaluated with the portable determiner (chlorophyll content) and then the same leaves were subjected to classical methodology laboratory (extractable pigments). The resistant biotype of fleabane showed higher contents of chlorophyll a, b, and total carotenoids, inferring a greater competitive potential regarding the susceptible population to the herbicide. The portable determiner of chlorophyll showed high correlation with the classical method of determination of photosynthetic pigments, and can thus be used to accurately assess this, saving time and reagents.
Resumo:
The irrigated rice production can be limited by various phytopathogenic agents, including root-knot nematodes (Meloidogyne spp.). Thus, the aim of this research was to check the host suitability of plant species most often found off-season and during rice cultivation, to root-knot nematode Meloidogyne graminicola, under two irrigation managements. Two experiments were conducted in a completely randomized design. In the first experiment seven plant species that occur in an area of rice cultivation, in fallow, off-season were evaluated. For the second experiment nine weed species infesting the irrigated rice culture were tested in rainfed and flooding conditions. The sixteen species, kept individually in pots with sterilized substrate, were inoculated with 5,000 eggs and second stage juveniles (J2) of nematode. BRS 410 IRGA rice plants inoculated with M.graminicola were used as control. Two months after inoculation, the root system of each plant was evaluated for number of galls and nematode reproduction factor. It was verified that the species of off-season of rice cultivation Sida rhombifolia, Raphanus raphanistrum, Spergula arvensis, Lotus corniculatus and Trifolium repens, and, during the cycle of rice cultivation, Aeschynomene denticulata, Leersia hexandra, are immune to nematode. The plant species off-season, Avena strigosa and Lolium multiflorum and of cultivation, Alternanthera philoxeroides, red rice, Echinochloa crusgalli, Cyperus difformis, Cyperus esculentus, Cyperus iria and Fimbristylis miliacea would behave as hosts of M.graminicola, mostly under rainfed conditions.
Resumo:
Oseltamivir phosphate is a potent viral inhibitor produced from shikimic acid extracted from seeds of Ilicium verum, the most important natural source. With the site of action 5-enolpyruvylshikimate-3-phosphate synthase (EPSP), glyphosate is the only compound capable of inhibiting its activity with the consequent accumulation of shikimic acid in plants. Corn and soybean plants were sprayed with reduced rates of glyphosate (0.0 to 230.4 g a.i. ha¹) and shikimic acid content in the dry mass was determined by HPLC 3, 7 and 10 days after application. Results showed shikimic acid accumulation in dry mass with increases of up to 969% in corn and 33,000% on soybeans, with peak concentrations 3 days after treatment (DAT). Industrial feasibility for shikimic acid production, combined with favorable climatic conditions for growing corn and soybean in virtually all over Brazil, favor the use of reduced rates of glyphosate in shikimic acid biosynthesis, with potential for use as an inducer in exploration of alternative sources for production of oseltamivir phosphate with low environmental impact.
Resumo:
Competition between maize and signalgrass can economically cripple the intercropping by the reduced yield of maize and dry matter content of the forage. In seeking to define plant arrangements which make this system more efficient, this research was held with the objective of assessing the effects of interference of densities of signalgrass (Urochloa Brizantha) on nutrition and on maize grain yield. Two field experiments were conducted in a randomized block design with four replications. Treatments were arranged similarly in both experiments, in a 2 x 4 factorial design, the first factor being the dose of Nicosulfuron herbicide applied (0 and 8 g ha-1) and the second factor being the forage seeding rates (0, 2, 4 and 6 kg of seeds per hectare). The interference of signalgrass reduced foliar nitrogen, potassium and phosphorus content in maize plants intercropped with the forage. Higher values of grain yield were observed with the reduction of the spacing and the application of the recommended herbicide underdose (8 g ha-1). It was concluded that, regardless of the seeding density of U. Brizantha, reducing the maize seeding inter-rows spacing, combined with the application of an underdose of Nicosulfuron, caused a positive effect by reducing the initial forage growth, resulting in less interference of Urochloa brizantha on nutrient uptake by the maize plants and grain yield of the crop.
Resumo:
Trinexapac-ethyl and sulfometuron-methyl are the most widely used ripeners in sugarcane. The application is performed by airborne spraying. Thus, if weather conditions are unfavorable, spray drift to neighboring areas may occur. The objective of this study was to assess the selectivity of the plant growth regulators trinexapac-ethyl and sulfometuron-methyl, used as sugarcane ripeners, to eucalyptus (Eucalyptus urograndis) young plants. The experiment was installed in an eucalyptus commercial yield area, in the municipality of Tambaú, state of São Paulo, Brazil, and arranged in a 2 x 8 factorial design in randomized blocks with four replications. The treatments studied were trinexapac-ethyl and sulfometuron-methyl, sprayed in eight doses, 0; 1.0; 2.5; 5.0; 10; 25; 50 and 100% of the dose used in sugarcane as ripeners (200 g ha-1 of trinexapac-ethyl and 15 g ha-1 of sulfometuron-methyl). Chemical ripeners were applied on eucalyptus plants with 48 cm in height on average; 10.1 branches; 4.5 mm of stem diameter and 44.3 cm of crown diameter, at 46 days after seeding. Trinexapac-ethyl was selective to eucalyptus and stimulated crown diameter growth. At higher doses, sulfometuron-methyl promoted severe noticeable injuries in eucalyptus plants, such as apical bud death. However, during the assessment period the plants recovered and the visual symptoms of phytotoxicity and growth alterations were not observed at 60 days after application. The plant growth regulators trinexapac-ethyl and sulfometuron-methyl were selective to eucalyptus young plants.
Resumo:
This study has aimed to develop a method for simultaneous extraction and determination by liquid chromatography and mass spectrometry (LC-MS/MS) of glyphosate, aminomethylphosphonic acid (AMPA), shikimic acid, quinic acid, phenylalanine, tyrosine and tryptophan. For the joint analysis of these compounds the best conditions of ionization in mass spectrometry and for chromatographic separation of the compounds were selected. Calibration curves and linearity ranges were also determined for each compound. Different extraction systems of the compounds were tested from plant tissues collected from sugarcane (Saccharum officinarum) and eucalyptus (Eucalyptus urophylla platiphylla) plants two days after the glyphosate application at the dose of 720 g a.e. ha-1. The plant material was dried in a forced air circulation drying oven and in a lyophilizer, and subsequently the extractions with acidified water (pH 2.5), acetonitrile-water (50:50) [v/v] and methanol-water (50:50) [v/v] were tested. To verify the recovery of the compounds in the plant matrix with acidified water as an extracting solution, the samples were fortified with a solution containing the mixture of the different analytical standards present so that this one presented the same levels of 50 and 100 μg L-1 of each compound. All experiments were conducted with three replicates. The analytical method developed was efficient for compounds quantifications. The extraction from the samples dried in an oven and using acidified water allowed better extraction levels for all compounds. The recovery levels of the compounds in the fortified samples with known amounts of each compound for both plants samples were rather satisfactory.
Resumo:
ABSTRACTWith the present study we aim to assess the damage caused to Eucalyptus plants exposed to glyphosate drift in different canopy portions. The drift simulation was carried out through application of 1,080 g ha-1 of glyphosate in five canopy portions (0, 25, 50, 75 and 100% of the low branches), in four areas of cultivation. Areas I and II, plants with 0.91 and 2.98 m, and height of canopy drift exposition of 0.30 and 1.0 m, respectively. In areas III and IV both cultivations were 8.15 m high, varying the height of drift exposition between 2.0 and 2.5 m, respectively. At 30 and 480 days after application (DAA), the survival rate was assessed, and at 300 and 480 DAA diameter at breast height (DBH), height, volume and their respective increment were determined. The medium annual increment (MAI) was determined at 480 DAA. Area I, in which the plants were 0.91 m high, we observed that treatment with 100% of the low branches exposed to drift led to stand reduction of the plants around 18.75 and 38.19% at 30 and 480 DAA, respectively. Areas I and II showed reduction in plant growth in height and DBH, wood volume and MAI, to the extent that there was an increase in the portion of canopy exposed to glyphosate drift. However, in areas III and IV, in which 8.15 m height plants were found, no changes were verified for the evaluated characteristics, regardless of the portion of canopy exposed to glyphosate drift.
Resumo:
The use of herbicides, even in tolerant crops, can cause stress evidenced by increase phytotoxicity affecting growth and development. The objectives of this study were to evaluate herbicides effect from different mechanisms of action in photosynthetic and oxidative stress parameters, as well visual phytotoxicity and wild radish control in wheat crop, cultivar Quartzo. Two trials were conducted where the first one evaluated the photosynthetic parameters on wheat plants in two seasons collection, following the application of herbicides bentazon, clodinafop, iodosulfuron, metribuzin, metsulfuron and 2,4-D; and the second one evaluated wild radish (Raphanus sativus) control, wheat phytotoxicity and yield due to bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D herbicides application. Photosynthetic rate, stomatal conductance and transpiration were negatively affected by metribuzin, metsulfuron and 2,4-D herbicides at 24 and 120 HAS (hours after spraying) compared to control. Oxidative stress was similar or lower to control, when herbicide was applied and, in general, there was no difference between application times. Lipid peroxidation, catalase activity and phenols were higher in the first collection time. The application of herbicides iodosulfuron and 2,4-D reduces chlorophylls and carotenoids in wheat. Herbicides bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D are selective to wheat, cultivar Quartzo and do not affect wheat yield. 2,4-D, metribuzin and iodosulfuron are more efficient for wild radish control.
Exploring Herbicidal Potential of Aqueous Extracts of Some Herbaceous Plants Against Parthenium Weed
Resumo:
To assess the phytotoxic potential of Achyranthes aspera, Alternanthera philoxeroides, Datura metel and Rumex dentatus against Parthenium hysterophorus, 5% (w/v on dry weight basis) aqueous extracts from root, stem, leaf, flower and whole plant were tested through a Petri plate-based germination and pot-cultured seedling bioassays. Achyranthes aspera and A. philoxeroides inhibited parthenium weed germination more than extracts from other species. Whole plant, leaf and fruit extracts of A. aspera reduced the germination percentage (5%); leaf extract from A. philoxeroides caused lower germination index (0.4), higher mean germination time (14 d) and longer time to 50% germination (13.5 d) of parthenium weed. In the foliar spray bioassay, A. aspera reduced parthenium weed shoot growth more than the other species whereas R. dentatus caused more reduction in root growth. Whole plant extract from A. aspera caused maximum reduction in parthenium weed seedling vigor index (98%) and seedling biomass (96%). The aqueous extracts of A. aspera and A. philoxeroides contained higher concentrations of phenolics viz. gallic (16.9 mg L-1), caffeic (7.4 mg L-1), chromatotropic (63.8 mg L-1), p-coumaric (10.5 mg L-1), m-coumaric (3.1 mg L-1), syringic (9.21 mg L-1) and 4 hydroxy-3-methoxy benzoic (118.6 mg L-1) acids compared with extracts of the other two species tested.