273 resultados para Obtenção de tecidos e órgãos
Resumo:
This work presents the optimization of the microwave-assisted hydrothermal synthesis of [Zn(BDC)(H2O)2]n . The reactions were carried out at the fixed temperature of 120 ºC for 10, 20, 30 and 40 min. Pure crystalline [Zn(BDC)(H2O)2]n was obtained in high yield (ca. 90%) with a reaction time of 10 min. The phase obtained and its purity was confirmed by Rietveld refinement, with a final value for Rwp/Rexp equal to 1.48. Increased reaction times (20, 30 and 40 min) favored the formation of unwanted by products, resulting in mixtures of several crystalline phases.
Resumo:
Despite the increase in peptide chain aggregation, which decreases the rate of coupling reactions, the synthesis and use of very highly substituted resins still remains as a controversial point in the SPPS, due to its clear economical advantages (lesser solvent consumption and higher amount of peptide per synthesis). In order to better investigate the synthesis and the use of very highly substituted resins, the FTIR, NMR and EPR were compared. By FTIR techniques it was possible to follow all the steps of resin synthesis and the factors affecting the aggregation of the chains inside the peptidil-BHAR and MBHAR.
Resumo:
Silica obtained from rice husk after acid leaching and calcination was compared to commercial silica as a catalyst support. CaO and SnO2 catalysts were prepared by impregnation and tested in the transesterification of soybean oil and the esterification of oleic acid. CaO catalysts showed basic character and were the most active for transesterification, whereas SnO2 catalysts were acid and the most effective for esterification. In both cases the performances of the catalysts prepared with rice husk ash and commercial silica were similar. These results demonstrate that rice husk is a cost-effective and environmentally-friendly source of silica that can be used as a catalyst support.
Resumo:
The aim of this work was to contribute to the creation of new ways of treating wastewater contaminated with Cr3+, based on solid-liquid adsorption. An adsorbent material was prepared by functionalization of kaolinite with glycerin biodiesel by-product. This material was tested for adsorption performed using a batch method, and results showed that inclusion of glycerin in the structure of kaolinite led to a significant increase in the capacity of Cr3+ adsorption. This contributes to the allocation of by-product of biodiesel and to the treatment of effluents from tanneries.
Resumo:
Soil fluxes of N2O were determined over one year in montane tropical rainforest of southeastern Brazil with average annual rainfall of 2.8 m. Annual mean (± standard deviation) and median N2O fluxes were 3.0 ± 1.4 and 2.7 µg N m-2 h-1, respectively, is 5-10 times lower than mean values reported in literature for tropical rainforest soils in the Amazon basin. N2O fluxes varied spatially and seasonally, were about twice as high during summer as in winter, and significantly influenced by both monthly precipitation and soil temperature.
Resumo:
The aim of this work was to study monoalkyl ester synthesis catalyzed by immobilized lipase Lipozyme RM IM via the esterification reaction. Yields of over 90% were obtained with butanol in esterification reactions with oleic acid. In the reactions with deodorizer distillates of vegetable oils and butanol, the conversion obtained was greater than 80% after 2.5 h. For the esterification reaction of palm fatty acid deodorizer distillate (PFAD) and butanol, seven reuse cycles of Lipozyme RM IM were carried out and the final conversion was 42% lower than the initial conversion.
Resumo:
Methanolic transesterification of oils and fats was carried out in a two steps procedure, under basic and acidic catalysis. Palm, soybean, canola, corn, rice, grapeseed, sunflower, peanut, pequi and olive oils, besides tallow and lard were used as feedstock. Specific gravity, relative viscosity, thin layer chromatography and gas chromatography were used to characterize the biodiesel. Biodiesel was obtained in high yield and purity. Results were used to discuss the following key-concepts: 1 - triglycerides, composition and properties; 2 - nucleophilic acyl substitution under basic and acid conditions, 3 - thin layer chromatography, 4 - gas chromatography and its quantitative methods.
Resumo:
This study aimed to produce and characterize a novel material from fish scales and chitosan for use as a medium for the extended release of herbicides. The mechanism of release for the herbicides atrazine and diuron was influenced by diffusion and swelling according to the power law kinetic model. The atrazine release time was seven days, while that of diuron was four days. The results of this study will contribute to the development of environmental matrices for herbicide release systems.
Resumo:
In this work, we report a new method for obtaining racemic β-hydroxyesters by reduction of β-ketoesters. The use of glycerol as a reactional medium in selective reduction of β-ketoesters into the corresponding alcohols was shown to be a viable and more efficient alternative compared with the conventional methodology, taking into account green chemistry prerogatives.
Resumo:
In this work, an experimental design was used to analyze the influence of process parameters on the production of extracellular enzymes such as β-glucosidase and peroxidase, and their possible effect on the obtention of soluble and nanostructured silica from rice husk ash by the action of the fungus Fusarium oxysporum. Specifically, pH, fermentation time and glucose concentration in the culture medium were varied. Statistical analysis indicated that the silica synthesis in the aqueous medium was strongly dependent on pH and time. Although the glucose concentration does not exert a direct influence on the biosynthesis of silica, it is an important parameter in the production of extracellular enzymes. To prevent enzyme inhibition and provide higher dissolution of silica, it is recommended to work at a pH close to neutral with a glucose concentration of 3 g L-1 for at least 144 h.
Resumo:
Composites strengthened with nanocellulose have been developed with the aim of improving mechanical, barrier, and thermal properties of materials. This improvement is primarily due to the nanometric size and the high crystallinity of the incorporated cellulose. Cassava starch films plasticized with glycerol and incorporated with nanocellulose from coconut fibers were developed in this study. The effect of this incorporation was studied with respect to the water activity, solubility, mechanical properties, thermal analysis, and biodegradability. The study demonstrated that the film properties can be significantly altered through the incorporation of small concentrations of nanocellulose.
Resumo:
The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.
Resumo:
Both primary and secondary amines react with 2,4-dinitrochlorobenzene to give derivatives of 1-alkylamino-2,4-dinitrobenzene. These compounds are important intermediates for the synthesis of a diverse range of products. The methodology reported in the present study involves either the room temperature reaction or heating at 70 °C in ethanol in the presence of triethylamine. This transformation occurs via a nucleophilic substitution reaction. The 1-alkylamino-2,4-dinitrobenzene derivatives were obtained in greater than 90% purified yield. The selective reduction of dinitro compounds is an important synthetic strategy for the synthesis of intermediates for dyes, pharmaceuticals and agrochemicals. The use of SnCl2 as a suspension in EtOAc is a promising method for the regio- and chemo-selective reduction of 1-alkylamino-2,4-dinitrobenzenes to 1-alkylamino-2-amino-4-nitrobenzenes. These products are useful intermediates in organic synthesis.
Resumo:
In this study, a novel hybrid composite based on biodegradable hydrogel and Portland cement with promising technological properties was reported. In the first step, a full 23 with central point factorial design was utilized to obtain the enhanced polyacrylamide-carboxymethylcellulose hydrogel compositions. A mathematical model was devised, indicating that the 3 main variables were significant and the AAm and MBAAm variables positively contributed to the mode and showing that the CMC variable had the opposite contribution. In the second step, these compositions were mixed with Portland cement to obtain the hybrid composites. The presence of cement improved the mechanical properties of polymeric matrices, and electronic microscopic micrographics revealed that the hydrogels were well adhered to the cement phase and no phase separation between hydrogel and cement was detected. Finally, using the energy dispersive X-ray technique, the elements Na, Mg, Al, Si, S, K, Ca and Fe were detected in the polymeric matrix, consistent with the hybrid composite formation.