458 resultados para Not conventional text
Resumo:
Background: Postprandial Lipemia (PPL) is a physiological process that reflects the ability of the body to metabolize lipids. Even though the influence of oral contraceptives (OC) on PPL is not known, it is a known fact that their use increases fasting lipid values. Objective: To compare the PPL between women who are on OC and those who are not. Methods: A prospective analytical study which assessed eutrophic women, aged between 18 and 28 years old, who were irregularly active and with fasting triglycerides ≤150 mg/dL. They were divided into two groups: oral contraceptive group (COG) and non-oral contraceptive group (NCOG). Volunteers were submitted to the PPL test, in which blood samples were collected in time 0 (12-hour fasting) and after the intake of lipids in times 180 and 240 minutes. In order to compare the triglyceride deltas, which reflect PPL, the two-tailed Mann-Whitney test was used for independent samples between fasting collections and 180 minutes (Δ1) and between fasting and 240 minutes (Δ2). Results: Forty women were assessed and equally divided between groups. In the fasting lipid profile, it was observed that HDL did not present significant differences and that triglycerides in COG were twice as high in comparison to NCOG. Medians of Δ1 and Δ2 presented significant differences in both comparisons (p ≤0.05). Conclusion: The results point out that women who are irregularly active and use OC present more PPL in relation to those who do not use OC, which suggests that in this population, its chronic use increases the risk of heart conditions.
Resumo:
Background:Evidences suggest that paraoxonase 1 (PON1) confers important antioxidant and anti-inflammatory properties when associated with high-density lipoprotein (HDL).Objective:To investigate the relationships between p.Q192R SNP ofPON1, biochemical parameters and carotid atherosclerosis in an asymptomatic, normolipidemic Brazilian population sample.Methods:We studied 584 volunteers (females n = 326, males n = 258; 19-75 years of age). Total genomic DNA was extracted and SNP was detected in the TaqMan® SNP OpenArray® genotyping platform (Applied Biosystems, Foster City, CA). Plasma lipoproteins and apolipoproteins were determined and PON1 activity was measured using paraoxon as a substrate. High-resolution β-mode ultrasonography was used to measure cIMT and the presence of carotid atherosclerotic plaques in a subgroup of individuals (n = 317).Results:The presence of p.192Q was associated with a significant increase in PON1 activity (RR = 12.30 (11.38); RQ = 46.96 (22.35); QQ = 85.35 (24.83) μmol/min; p < 0.0001), HDL-C (RR= 45 (37); RQ = 62 (39); QQ = 69 (29) mg/dL; p < 0.001) and apo A-I (RR = 140.76 ± 36.39; RQ = 147.62 ± 36.92; QQ = 147.49 ± 36.65 mg/dL; p = 0.019). Stepwise regression analysis revealed that heterozygous and p.192Q carriers influenced by 58% PON1 activity towards paraoxon. The univariate linear regression analysis demonstrated that p.Q192R SNP was not associated with mean cIMT; as a result, in the multiple regression analysis, no variables were selected with 5% significance. In logistic regression analysis, the studied parameters were not associated with the presence of carotid plaques.Conclusion:In low-risk individuals, the presence of the p.192Q variant ofPON1 is associated with a beneficial plasma lipid profile but not with carotid atherosclerosis.
Resumo:
AbstractBackground:The recording of arrhythmic events (AE) in renal transplant candidates (RTCs) undergoing dialysis is limited by conventional electrocardiography. However, continuous cardiac rhythm monitoring seems to be more appropriate due to automatic detection of arrhythmia, but this method has not been used.Objective:We aimed to investigate the incidence and predictors of AE in RTCs using an implantable loop recorder (ILR).Methods:A prospective observational study conducted from June 2009 to January 2011 included 100 consecutive ambulatory RTCs who underwent ILR and were followed-up for at least 1 year. Multivariate logistic regression was applied to define predictors of AE.Results:During a mean follow-up of 424 ± 127 days, AE could be detected in 98% of patients, and 92% had more than one type of arrhythmia, with most considered potentially not serious. Sustained atrial tachycardia and atrial fibrillation occurred in 7% and 13% of patients, respectively, and bradyarrhythmia and non-sustained or sustained ventricular tachycardia (VT) occurred in 25% and 57%, respectively. There were 18 deaths, of which 7 were sudden cardiac events: 3 bradyarrhythmias, 1 ventricular fibrillation, 1 myocardial infarction, and 2 undetermined. The presence of a long QTc (odds ratio [OR] = 7.28; 95% confidence interval [CI], 2.01–26.35; p = 0.002), and the duration of the PR interval (OR = 1.05; 95% CI, 1.02–1.08; p < 0.001) were independently associated with bradyarrhythmias. Left ventricular dilatation (LVD) was independently associated with non-sustained VT (OR = 2.83; 95% CI, 1.01–7.96; p = 0.041).Conclusions:In medium-term follow-up of RTCs, ILR helped detect a high incidence of AE, most of which did not have clinical relevance. The PR interval and presence of long QTc were predictive of bradyarrhythmias, whereas LVD was predictive of non-sustained VT.
Resumo:
Background: Heart transplant rejection originates slow and fragmented conduction. Signal-averaged ECG (SAECG) is a stratification method in the risk of rejection. Objective: To develop a risk score for rejection, using SAECG variables. Methods: We studied 28 transplant patients. First, we divided the sample into two groups based on the occurrence of acute rejection (5 with rejection and 23 without). In a second phase, we divided the sample considering the existence or not of rejection in at least one biopsy performed on the follow-up period (rejection pm1: 18 with rejection and 10 without). Results: On conventional ECG, the presence of fibrosis was the only criterion associated with acute rejection (OR = 19; 95% CI = 1.65-218.47; p = 0.02). Considering the rejection pm1, an association was found with the SAECG variables, mainly with RMS40 (OR = 0.97; 95% CI = 0.87-0.99; p = 0.03) and LAS40 (OR = 1.06; 95% IC = 1.01-1.11; p = 0.03). We formulated a risk score including those variables, and evaluated its discriminative performance in our sample. The presence of fibrosis with increasing of LAS40 and decreasing of RMS40 showed a good ability to distinguish between patients with and without rejection (AUC = 0.82; p < 0.01), assuming a cutoff point of sensitivity = 83.3% and specificity = 60%. Conclusion: The SAECG distinguished between patients with and without rejection. The usefulness of the proposed risk score must be demonstrated in larger follow-up studies.
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
Antibodies against heart vascular structures and striated muscle cells interstitium (EVI antibodies) persist in Chagas' disease patients who had been cured by specific treatment as demonstrated by negative xenodiagnosis, conventional serology (CS) and complement mediated lysis (CoML). On the other hand, EVI antibodies are either present or absent in treated patients presenting positive CS but negative CoML. Since CoML detects antibodies associated to resistance, EVI antibodies are not likely to participate in the control of T. cruzi infections although they might be induced by cross-reacting antigens of heart cells and the parasite. They are neither necessarily related to antibodies responsible for CS. Absorption with T. cruzi and heart tissue confirms the suggestion that EVI antibodies are induced by a number of antigenic determinants, most from heart structures with a minor participation of T. cruzi antigens.
Resumo:
A virus antigenic characterization methodology using an indirect method of antibody detection ELISA with virus-infected cultured cells as antigen and a micro virus neutralisation test using EIA (NT-EIA) as an aid to reading were used for antigenic characterization of Jatobal (BeAn 423380). Jatobal virus was characterized as a Bunyaviridae, Bunyavirus genus, Simbu serogroup virus. ELISA using infected cultured cells as antigen is a sensitive and reliable method for identification of viruses and has many advantages over conventional antibody capture ELISA's and other tests: it eliminates solid phase coating with virus and laborious antigen preparation; it permits screening of large numbers of virus antisera faster and more easily than by CF, HAI, or plaque reduction NT. ELISA and NT using EIA as an aid to reading can be applicable to viruses which do not produce cytopathogenic effect. Both techniques are applicable to identification of viruses which grow in mosquito cells.
Polypeptides reactive with antibodies eluted from the surface of Babesia bovis-infected erythrocytes
Resumo:
A technique was sought that would enable identification of surface-exposed parasite antigens on Babesia bovis-infected erythrocytes (BbIE) that are not detectable by surface-specific immunoprecipitations. Antibodies which bind to the surface of BbIE were recovered from intact cells using a low pH wash procedure. The eluted antibodies were then used in conventional immunoprecipitation assays to identify parasite-synthesized polypeptides carrying epitopes that are exposed on the surface or are cross reactive with shuch epitopes. The results of these experiments support our previous data, obtained using a surface-specific immunoprecipitation technique, in the identification of a repertoire of parasite-derived antigens on the surface of infected erythrocytes (Allred et al., 1991). In addition, two polypeptides of Mr 68,000 and 185,000 were identified wich react strongly with the eluted antibodies but wich are not detected by surface-immunoprecipitation. These data illustrate the potential of this approach for identification of parasite polypeptides wich carry epitopes exposed on, or cross-reactive with exposed epitopes of the infected erythrocyte surface.
Resumo:
Conventional ultrasonography highly contributes to a non invasive diagnosis of HS schistosomiasis (Cerri et al., 1984). The introduction of Dopple allowed new advances in the knowledge of the portal dinamics of this disease (Taylor et al., 1985; Moriyasu et al., 1986). The aim of this paper was to analize the hemodinamic behavior of the portal vessels, considering caliper, maximum flow speed, direction of flow and preferential disposition of the collateral vessels. Thirty two patients with schistosomiasis mansoni with confirmed hepatosplenic form (HSSM), were analyzed. Fourteen patients with the intestinal form, have been analyzed as a control group. The results demonstrated that the maximum speed of the portal vein in the two groups has not been significantly diferent. Nevertheless, the diameter of the PV in the hepatosplenic group has been larger. The splenic vein presented speed and caliper larger than the superior mesenteric vein. The hepatic artery has been detectly in only 40% of the cases. The hepatic veins presented normal caliper and spectral pattern. The duplex proved to be an useful technich complementar and non-invasive, in the study of the HSSM.
Resumo:
Considering the possibility that invasiveness could be a neglected factor of virulence in Vibrio fluvialis-linked enteritis, since a dysenteric form of the disease was seen in Bangladesh, we studied 12 Brazilian strains of the organism, six clinical and six environmental, to determine whether they might be able to enter into HeLa cell monolayers or would carry plasmids incidentally involved in invasiveness. Four human and two environmental isolates attached to but did not enter into the cells. Though five strains harbored plasmids,no relationship was found between the carriage of these genetic elements and adhesiveness.