203 resultados para Nitrogen source
Resumo:
The goal of this research was evaluated the effects of potassium and nitrogen fertilization on the plum (Prunus salicina) fresh fruit quality and after cold storage. The experiment was carried out in a five year-old plum orchard 'Reubennel', located at Araucaria County, Parana State, Southern Brazil, in a Haplumbrept Soil. Potassium fertilizer was applied at 55 and 110 kg/ha/year of K2O, as KCl. Nitrogen fertilizer was applied at 40, 80, 120, 160 and 200 kg/ha/year of N, as urea. It was used a split-plot design in a factorial scheme (2x5). One hundred plum fruits were harvested from each plot, in the same day, when 25 to 50% of the peel presented yellow-reddish color. At harvest and after 17, 27 and 37 days of storage at 0 ± 0.5 ºC, the flesh firmness, the total soluble solids, and the titratable acidity were assessed. Fresh fruit quality was affected by N application, with the best results obtained by applying 40 kg/ha/year of N. The N and K rate of 40 and 110 kg/ha/year, respectively, kept superior fruit quality during the storage. 'Reubennel' cold storage can not exceed 27 days. Fresh and stored 'Reubennel' plum fruit qualities depend on the N and K fertilizer rates.
Resumo:
This study was carried out to evaluate the yield, total N content in leaves and must composition of grapes from the Cabernet Sauvignon variety subjected to the application of urea and organic compost. Cabernet Sauvignon grapevines in Rosário do Sul, RS, Brazil, in 2008, 2009 and 2010 were subjected to annual application of 40 kg N ha-1 in the form of organic compost and urea, and compared to unfertilized grapevines. In the 2008/09, 2009/10 and 2010/11 crop seasons, leaves were collected for analysis of total N content. At maturation of the grapes, the yield and quality attributes of the must were evaluated. The application of N sources, especially organic compost, increased the N content in the whole leaf at full flowering. Application of organic compost and urea has little effect on grape yield and does not affect the total nutrient content in the must, nor the enological attributes.
Resumo:
Several species of Annona (Annonaceae) are used in traditional Mexican medicine by their anti-anxiety, anticonvulsant and tranquilizing properties. It has been reported that the alkaloids isolated from some species of the Annona have affinity to serotonergic 5-HT1A receptors and modulate dopaminergic transmission, which is involved in depressive disorders. In this review it is showed the results of the antidepressant-like effect of an alkaloid extract from the aerial parts of Annona cherimola (TA) in mice. The antidepressant-like effect was evaluated in the forced swimming test. To elucidate a possible mechanism of action, experiments of synergism with antidepressant drugs, such as imipramine (IMI), clomipramine (CLIMI), and fluoxetine (FLX), were carried out. The neurotransmitter content (DA: dopamine, 5HT: serotonin and its metabolites, HVA: homovanillic acid and 5HIAA:5-hydroxyindoleacetic) in the whole brain of mice were also determined by HPLC method. The results showed that repeated treatment with TA produced antidepressant-like effects in mice. This effect was not related to an increase in locomotor activity. Administration of TA facilitated the antidepressant effect of IMI and CLIMI as well as increased the turnover of DA and 5-HT. The alkaloids: 1,2-dimethoxy-5, 6.6 to 7-tetrahydro-4H-dibenzoquinoline-3,8,9,10-tetraol, anonaine, liriodenine, and nornuciferine were the main constituents of TA.
Resumo:
AbstractThe authors review the main concepts regarding the importance of cleaning/disinfection of ultrasonography probes, aiming a better comprehension by practitioners and thus enabling strategies to establish a safe practice without compromising the quality of the examination and the operator productivity. In the context of biosafety, it is imperative to assume that contact with blood or body fluids represents a potential source of infection. Thus, in order to implement cleaning/disinfection practice, it is necessary to understand the principles of infection control, to consider the cost/benefit ratio of the measures to be implemented, and most importantly, to comprehend that such measures will not only benefit the health professional and the patient, but the society as a whole.
Resumo:
Nitrogen content in natural gas was studied in experimental and computational investigations to identify its influence on the emission level of exhaust gases from combustion facilities. Changes in natural gas composition with different N2 concentrations may result from introducing a new source gas into the system. An industrial burner fired at 75 kW, housed in a laboratory-scale furnace, was employed for runs where the natural gas/N2 proportion was varied. The exhaust and in-furnace measurements of temperature and gas concentrations were performed for different combustion scenarios, varying N2 content from 1-10 %v. Results have shown that the contamination of natural gas with nitrogen reduced the peak flame temperature, the concentration of unstable species, the NO X emission level and the heat transfer rate to the furnace walls, resulting from the recombination reactions.
Resumo:
The seasonal behavior of NO2 concentration shows a maximum occurring during sugarcane crop and this suggests that the biomass burning is significant source of emission at this time of the year. Along the day, the variation of the NO2 showed a decrease during the increased sunlight and an increase thereafter, caused by occurrence of photochemical reactions. Measurements of NO2 were done inside of residential and industrial kitchens and also inside of a parking garage located in the underground of a supermarket building. The indoor concentrations of NO2 were significantly higher than the concentrations of the external atmosphere and it shows the importance of the sources of internal emissions.
Resumo:
Carotenoids are natural dyes synthesized by plants, algae and microorganisms. Application in many sectors can be found, as food dyeing and supplementation, pharmaceuticals, cosmetics and animal feed. Recent investigations have shown their ability to reduce the risks for many degenerative diseases like cancer, heart diseases, cataract and macular degeneration. An advantage of microbial carotenoids is the fact that the cultivation in controlled conditions is not dependent of climate, season or soil composition. In this review the advances in bio-production of carotenoids are presented, discussing the main factors that influence the microbial production of these dyes in different systems.
Resumo:
This study assesses the importance of groundwater discharge to dissolved nutrient levels in Mangueira Lagoon. A transect of an irrigation canal in the margin of Lagoon demonstrated a strong geochemical gradient due to high groundwater inputs in this area. Using 222Rn as a quantitative groundwater tracer, we observed that the flux of dissolved inorganic nitrogen (DIN), silicate and phosphate (1178 and 1977; 26190 and 35652; 167 and 188 mol d-1 for winter and summer, respectively) can continually supply/sustain primary production. The irrigation canals act as an artificial underground tributary and represent a new source of nutrients to coastal lagoons.
Resumo:
The essential oils from leaves, stems and fruits of Piper divaricatum were analyzed by GC-MS. The tissues showed high safrole content: leaves (98%), fruits (87%) and stems (83%), with yields of 2.0, 4.8 and 1.7%, respectively. This is a new alternative source of safrole, a compound widely used as a flavoring agent and insecticide. The leaf's oil showed antibacterial activity against gram-negative bacteria while safrole was active against Salmonella Typhimurium and Pseudomonas aeruginosa. In addition, the study of circadian rhythm of the safrole concentration in the essential oils of leaves showed a negligible variation of 92 to 98%.
Resumo:
The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery.
Resumo:
QSAR modeling is a novel computer program developed to generate and validate QSAR or QSPR (quantitative structure- activity or property relationships) models. With QSAR modeling, users can build partial least squares (PLS) regression models, perform variable selection with the ordered predictors selection (OPS) algorithm, and validate models by using y-randomization and leave-N-out cross validation. An additional new feature is outlier detection carried out by simultaneous comparison of sample leverage with the respective Studentized residuals. The program was developed using Java version 6, and runs on any operating system that supports Java Runtime Environment version 6. The use of the program is illustrated. This program is available for download at lqta.iqm.unicamp.br.
Resumo:
Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.
Resumo:
Analysis of the volatile fraction of Aristolochia trilobata stem led to the identification of 6-methyl-5-hepten-2-yl acetate (23.31 ± 0.28%), limonene (15.43 ± 0.030%), linalool (8.70 ± 0.29%), p-cymene (7.81 ± 0.12%), bicyclogermacrene (4.21 ± 0.11%), and spathulenol (4.17 ± 0.14%) as the major constituents of the essential oil. Linalool (29.51 ± 0.49%), 6-methyl-5-hepten-2-ol (19.54 ± 0.82%), 6-methyl-5-hepten-2-yl acetate (8.92 ± 0.16%), and a-terpineol (4.62 ± 0.05%) were identified as major constituents of the hydrolate. The compound 6-methyl-5-hepten-2-yl acetate was isolated for the first time from this plant and was identified as the major component of the volatile fraction.
Resumo:
Micro-mesoporous hybrid materials of ZSM-12/MCM-41 type with different micro- and mesoporosity contributions were prepared by a procedure that uses the desilication of the zeolite in an alkaline medium, followed by recrystallization onto the mesostructure, where the zeolite is used as the silica source in the formation of mesoporous phase. The materials were characterized by X-ray diffraction, nitrogen adsorption-desorption at 77 K, scanning electron microscopy and thermal analysis. The results showed that the methodology utilized is efficient for obtaining hybrid materials of ZSM-12/MCM-41 type with optimized micro-and mesoporosity.
Resumo:
Acacia mearnsii de Wild (black wattle) is one of the most important trees planted in Southern Brazil for tannin extraction and charcoal production. The pyrolysis of the black wattle wood used for obtaining charcoal is performed in brick ovens, with the gas fraction being sent directly into the environment. The present study examines the condensable compounds present in the liquor produced from black wattle wood at different thermal degradation conditions, using gas chromatography coupled with mass spectrometry (GC/MS). Branches of black wattle were thermally degraded at controlled ambient and temperature conditions. Overall, a higher variety of compounds were obtained under atmospheric air pressure than under synthetic air pressure. Most of the tentatively identified compounds, such as carboxylic acids, phenols, aldehydes, and low molecular mass lignin fragments, such as guayacol, syringol, and eugenol, were products of lignin thermoconversion. Substituted aromatic compounds, such as vanillin, ethyl vanillin, and 2-methoxy-4-propeny-phenol, were also identified. At temperatures above 200 ºC, furan, 2-acetylfuran, methyl-2-furoate, and furfural, amongst others, were identified as polysaccharide derivatives from cellulose and hemicellulose depolymerization. This study evidences the need for adequate management of the condensable by-products of charcoal production, both for economic reasons and for controlling their potential environmental impact.