176 resultados para NEUROENDOCRINE RESPONSES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN) under thiopental anesthesia. The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of competing intracellular pathways has been proposed to explain the reduced training adaptations after concurrent strength and endurance exercises (CE). The present study investigated the acute effects of CE, strength exercises (SE), and endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and Akt/mTOR/p70S6K1 pathway proteins in rats. Six animals per exercise group were killed immediately (0 h) and 2 h after each exercise mode. In addition, 6 animals in a non-exercised condition (NE) were killed on the same day and under the same conditions. The levels of AMPK, phospho-Thr172AMPK (p-AMPK), Akt, phospho-Ser473Akt (p-Akt), p70S6K1, phospho-Thr389-p70S6K1(p-p70S6K1), mTOR, phospho-Ser2448mTOR (p-mTOR), and phospho-Thr1462-TSC2 (p-TSC2) expression were evaluated by immunoblotting in total plantaris muscle extracts. The only significant difference detected was an increase (i.e., 87%) in Akt phosphorylated/total ratio in the CE group 2 h after exercise compared to the NE group (P = 0.002). There were no changes in AMPK, TSC2, mTOR, or p70S6K1 ratios when the exercise modes were compared to the NE condition (P ≥ 0.05). In conclusion, our data suggest that low-intensity and low-volume CE might not blunt the training-induced adaptations, since it did not activate competing intracellular pathways in an acute bout of strength and endurance exercises in rat skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cisplatin resistance remains one of the major obstacles when treating epithelial ovarian cancer. Because oxaliplatin and nedaplatin are effective against cisplatin-resistant ovarian cancer in clinical trials and signal transducer and activator of transcription 3 (STAT3) is associated with cisplatin resistance, we investigated whether overcoming cisplatin resistance by oxaliplatin and nedaplatin was associated with the STAT3 pathway in ovarian cancer. Alamar blue, clonogenic, and wound healing assays, and Western blot analysis were used to compare the effects of platinum drugs in SKOV-3 cells. At an equitoxic dose, oxaliplatin and nedaplatin exhibited similar inhibitory effects on colony-forming ability and greater inhibition on cell motility than cisplatin in ovarian cancer. Early in the time course of drug administration, cisplatin increased the expression of pSTAT3 (Tyr705), STAT3α, VEGF, survivin, and Bcl-XL, while oxaliplatin and nedaplatin exhibited the opposite effects, and upregulated pSTAT3 (Ser727) and STAT3β. The STAT3 pathway responded early to platinum drugs associated with cisplatin resistance in epithelial ovarian cancer and provided a rationale for new therapeutic strategies to reverse cisplatin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 6-minute walk test (6MWT) is a simple field test that is widely used in clinical settings to assess functional exercise capacity. However, studies with healthy subjects are scarce. We hypothesized that the 6MWT might be useful to assess exercise capacity in healthy subjects. The purpose of this study was to evaluate 6MWT intensity in middle-aged and older adults, as well as to develop a simple equation to predict oxygen uptake ( V ˙ O 2 ) from the 6-min walk distance (6MWD). Eighty-six participants, 40 men and 46 women, 40-74 years of age and with a mean body mass index of 28±6 kg/m2, performed the 6MWT according to American Thoracic Society guidelines. Physiological responses were evaluated during the 6MWT using a K4b2 Cosmed telemetry gas analyzer. On a different occasion, the subjects performed ramp protocol cardiopulmonary exercise testing (CPET) on a treadmill. Peak V ˙ O 2 in the 6MWT corresponded to 78±13% of the peak V ˙ O 2 during CPET, and the maximum heart rate corresponded to 80±23% of that obtained in CPET. Peak V ˙ O 2 in CPET was adequately predicted by the 6MWD by a linear regression equation: V ˙ O 2 mL·min-1·kg-1 = -2.863 + (0.0563×6MWDm) (R2=0.76). The 6MWT represents a moderate-to-high intensity activity in middle-aged and older adults and proved to be useful for predicting cardiorespiratory fitness in the present study. Our results suggest that the 6MWT may also be useful in asymptomatic individuals, and its use in walk-based conditioning programs should be encouraged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four cycles of chemotherapy are required to assess responses of multiple myeloma (MM) patients. We investigated whether circulating endothelial progenitor cells (cEPCs) could be a biomarker for predicting patient response in the first cycle of chemotherapy with bortezomib and dexamethasone, so patients might avoid ineffective and costly treatments and reduce exposure to unwanted side effects. We measured cEPCs and stromal cell-derived factor-1α (SDF-1α) in 46 MM patients in the first cycle of treatment with bortezomib and dexamethasone, and investigated clinical relevance based on patient response after four 21-day cycles. The mononuclear cell fraction was analyzed for cEPC by FACS analysis, and SDF-1α was analyzed by ELISA. The study population was divided into 3 groups according to the response to chemotherapy: good responders (n=16), common responders (n=12), and non-responders (n=18). There were no significant differences among these groups at baseline day 1 (P>0.05). cEPC levels decreased slightly at day 21 (8.2±3.3 cEPCs/μL) vs day 1 (8.4±2.9 cEPCs/μL) in good responders (P>0.05). In contrast, cEPC levels increased significantly in the other two groups (P<0.05). SDF-1α changes were closely related to changes in cEPCs. These findings indicate that change in cEPCs at day 21 in the first cycle might be considered a noninvasive biomarker for predicting a later response, and extent of change could help decide whether to continue this costly chemotherapy. cEPCs and the SDF-1α/CXCR4 axis are potential therapeutic targets for improved response and outcomes in MM patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H) and 8 normotensive (N) subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively). They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C) followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity). Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS) levels and ferric reducing ability of plasma (FRAP). Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05), although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1) and lower TBARS (P<0.01) and FRAP (P<0.05) levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors), present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training.