255 resultados para Modelos científicos e didáticos
Resumo:
Theoretical and practical aspects of the use of microwave-assisted strategies in chemistry are introduced for students using simple and safe experiments employing a domestic oven. Three procedures are proposed for evaluating the distribution of microwave radiation inside the microwave oven cavity: (1) variation of the volume of marshmallows; (2) drying of filter paper wetted with Co(II) solution, and (3) variation of water temperature, after microwave-assisted heating. These experiments establish the position with the highest incidence of microwave radiation in the oven cavity, which was chosen for the synthesis of salicylic acid acetate. This synthesis was performed in 5 min of heating and the yield was around 85%. All experiments can be carried out in a 4 h lab-session using low-cost instrumentation.
Resumo:
Calculations based on density functional theory at the B3LYP hybrid functional level applied to periodic models have been performed to characterize the structural and electronic properties of PbTiO3. Two different slab terminations (PbO and TiO2) have been considered to obtain and discuss the results of band structure, density of states, charge distribution on bulk and surface relaxation. It is observed that the relaxation processes are most prominent for the Ti and Pb surface atoms. The electron density maps confirm the partial covalent character of the Ti-O bonds. The calculated optical band gap and other results are in agreement with experimental data.
Resumo:
Raman dispersion refers to the dependence of the position of Raman bands on the energy of the exciting radiation. In this work, the three main models currently used to explain this phenomenon (Conjugated Length Model, Amplitude Mode Model and Effective Conjugation Coordinate Model) are discussed. Raman dispersion is a consequence of pi electron delocalization, but each model describes in a different way how pi electron delocalization affects the position of Raman bands. Here the features, qualities and problems of the three models are highlighted.
Resumo:
Continuum solvation models are nowadays widely used in the modeling of solvent effects and the range of applications goes from the calculation of partition coefficients to chemical reactions in solution. The present work presents a detailed explanation of the physical foundations of continuum models. We discuss the polarization of a dielectric and its representation through the volume and surface polarization charges. The Poisson equation for a dielectric was obtained and we have also derived and discuss the apparent surface charge method and its application for free energy of solvation calculations.
Resumo:
This paper describes the use of primary chemistry literature in a fifth-semester physical chemistry course for undergraduate chemistry students. The main goal is to expose students to the primary literature of physical chemistry, demonstrating how they can benefit from using it. The assignment addresses issues in chemical education such as scientific writing, relating lecture material to the real world, and conducting literature searches. The student evaluation of this assignment, consisting of two surveys and one focus group, showed its usefulness. The details of the evaluation instruments and their results are provided. Out of 45 students enrolled in the course, 30 (67%) students completed the assignment.
Resumo:
Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.
Resumo:
The aim of this investigation is to study how Zr/Ti-PILC adsorbs metals. The physico-chemical proprieties of Zr/Ti-PILC have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x10-1 mmol g-1, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant.
Resumo:
Mental models play an important role in the evolution of an individual's so-called knowledge. Using such representations, students can explain, foresee, and attribute causality to observed phenomena. In the case of Chemistry, the ability to work mentally with models assumes great importance, due to the microscopic component that is characteristic of this science. With the objective of exploring students' ability to work with models, 27 students of the Chemistry Institute of UNESP were asked to describe the mechanisms of dissolution, in water, of NaCl, HCl and HCN, as well as the partial dissolution of I2. Due to difficulties of access to complex descriptors of these processes, each student was asked to explain the phenomena using words and drawings. The results of these investigations were analyzed, and enabled construction of a framework representing the Chemistry students' theoretical training, especially with respect to their most important transferred skill: an ability to model the physical world.
Resumo:
Chemistry teachers increasingly use research articles in their undergraduate courses. This trend arises from current pedagogical emphasis on active learning and scientific process. In this paper, we describe some educational experiences on the use of research articles in chemistry higher education. Additionally, we present our own conclusions on the use of such methodology applied to a scientific communication course offered to undergraduate chemistry students at the University of São Paulo, Brazil.
Resumo:
Chemical modification of clays is possible due to their ion-exchange and adsorption capacities, which allows the adjustment of the physicochemical properties of the surfaces of their layers. This modification makes possible the use of clays to produce a great number of new materials, which range from coarse applications such as oil based drilling fluids to refined applications such as pharmaceutical products. This article intends to expose where there is still space for research and investment aiming at the performance improvement of clay-based materials.
Resumo:
The results of an exercise on electrochemistry for General Chemistry students are presented. The difficulty encountered by students in predicting the shift in the potential of the hydrogen electrode under non-standard conditions prompted a search in textbooks on how the subject is developed. Besides several instances of inconsistencies in defining the standard state, such as including the temperature in the definition, a number of incorrect depictions of the hydrogen electrode were discovered. Of the 28 General Chemistry books, 16 Physical Chemistry books and 24 Internet pages, 30, 20 and 46%, respectively, showed devices that would not work in practice.
Resumo:
The conventional approach to simple quantum chemistry models is contrasted with that known as momentum representation, where the wavefunctions are momentum dependent. Since the physical interactions are the same, state energies should not change, and whence the energy differences correlating with the real world as spectral lines or bands. We emphasize that one representation is not more fundamental than the other, and the choice is a matter of mathematical convenience. As spatial localization is rooted in our brains, to think in terms of the momentum present us a great mental challenge that can lead to complementary perspectives of a model.
Resumo:
The current legislation determines that the chemist must have a solid comprehension about chemical concepts. Literature presents the concept of mental model, which is determinant to the learning of phenomena and concepts. This paper presents some mental models that students of the Chemistry course at UFSCar have about chemical concepts. A lot of incoherence was observed in student's mental models, which is an evidence that there are problems in the learning of chemistry education.
Resumo:
This paper aims at analyzing the history of science content of three general chemistry textbooks used in Brazilian universities: the translations of Kotz and Treichel's Chemistry & Chemical Reactivity, Atkins and Jones's Chemical Principles, and Garritz and Chamizo's Química. Results revealed different trends for the inclusion of history of science in chemistry teaching. Kotz & Treichel and Atkins & Jones used history mainly as curiosity and ornament. Garritz & Chamizo adopted the historical approach as one of the organizing axis of their textbook. Nevertheless, the historical content of the three textbooks may be criticized from current historiographical standpoint.
Resumo:
This work outlines the historic development of the concept and main theories of energy transfer, as well as the principal experiments carried out to confirm or refute the proposed theories. Energy transfer in coordination compounds is also discussed with a focus on rare earth systems.