184 resultados para MOLECULAR PATHOLOGY
Resumo:
Twenty Calomys callosus, Rengger, 1830 (Rodentia-Cricetidae) were studied in the early stage of the acute schistosomal mansoni infection (42nd day). The same number of Swiss Webster mice were used as a comparative standard. Liver and intestinal sections, fixed in formalin-Millonig and embedded in paraffin, were stained with hematoxilin and eosin, PAS-Alcian Blue, pH = 1.0 and 2.5, Lennert's Giemsa, Picrosirius plus polarization microscopy, Periodic acid methanamine silver, Gomori's silver reticulin and resorcin-fuchsin. Immunohistological study (indirect immunofluorescence and peroxidase labeled extravidin-biotin methods) was done with antibodies specific to pro-collagen III, fibronectin, elastin, condroitin-sulfate, tenascin, alpha smooth muscle actin, vimentin and desmin. The hepatic granulomas were small, reaching only 27 of the volume of the hepatic Swiss Webster granuloma. They were composed mainly by large immature macrophages, often filled by schistosomal pigment, characterizing an exsudative-macrophage granuloma type. The granulomas were situated in the parenchyma and in the portal space. They were often intravascular, poor of extracellular matrix components, except fibronectin and presented, sometimes alpha smooth muscle actin and vimentin positive cells. The C. callosus intestinal granulomas were similar to Swiss Webster, showing predominance of macrophages. Therefore, the C. callosus acquire very well the Schistosoma mansoni infection, without developing strong hepatic acute granulomatous reaction, suggesting lack of histopathological signs of hypersensitivity.
Resumo:
Human Chagas' disease, caused by the protozoan Trypanosoma cruzi, is associated with pathological processes whose mechanisms are not known. To address this question, T cell lines were developed from chronic chagasic patients peripheral blood mononuclear cells (PBMC) and cloned. These T cell clones (TCC) were analyzed phenotypically with monoclonal antibodies by the use of a fluorescence microscope. The surface phenotype of the TCC from the asymptomatic patient were predominantly CD4 positive (86%). On the contrary, the surface phenotype CD8 was predominant in the TCC from the patients suffering from cardiomegaly with right bundle branch block (83%), bradycardia with megacolon (75 %) and bradycardia (75%). Future studies will be developed in order to identify the antigens eliciting these T cell subpopulations.
Resumo:
Lesions involving the sympathetic (para-vertebral ganglia) and para-sympathetic ganglia of intestines (Auerbach plexus) and heart (right atrial ganglia) were comparatively analyzed in mice infected with either of three different strain types of Trypanosoma cruzi, during acute and chronic infection, in an attempt to understand the influence of parasite strain in causing autonomic nervous system pathology. Ganglionar involvement with neuronal destruction appeared related to inflammation, which most of the times extended from neighboring adipose and cardiac, smooth and striated muscular tissues. Intraganglionic parasitism was exceptional. Inflammation involving peripheral nervous tissue exhibited a focal character and its variability in the several groups examined appeared unpredictable. Although lesions were generally more severe with the Y strain, comparative qualitative study did not allow the conclusion, under the present experimental conditions, that one strain was more pathogenic to the autonomic nervous system than others. No special tropism of the parasites from any strain toward autonomic ganglia was disclosed.
Resumo:
The carbohydrate-binding specificity of lectins from the seeds of Canavalia maritima and Dioclea grandiflora was studied by hapten-inhibition of haemagglutination using various sugars and sugar derivatives as inhibitors, including N-acetylneuraminic acid and N-acetylmuramic acid. Despite some discrepancies, both lectins exhibited a very similar carbohydrate-binding specificity as previously reported for other lectins from Diocleinae (tribe Phaseoleae, sub-tribe Diocleinae). Accordingly, both lectins exhibited almost identical hydropathic profiles and their three-dimensional models built up from the atomic coordinates of ConA looked very similar. However, docking experiments of glucose and mannose in their monosaccharide-binding sites, by comparison with the ConA-mannose complex used as a model, revealed conformational changes in side chains of the amino acid residues involved in the binding of monosaccharides. These results fully agree with crystallographic data showing that binding of specific ligands to ConA requires conformational chances of its monosaccharide-binding site.
Resumo:
Different molecular-genetic methods were used to identify a cohort of Leishmania strains from natural foci of zoonotic cutaneous leishmaniasis located in Central Asia, on the former USSR territory. The results obtained using isoenzymes, PCR, restriction fragment length polymorphisms of kDNA and molecular hybridization techniques are discussed in terms of their applicability, discrimination power and feasibility for answering questions related to molecular epidemiological research and for detecting mixed Leishmania infections
Resumo:
About one third of the world population is infected with tubercle bacilli, causing eight million new cases of tuberculosis (TB) and three million deaths each year. After years of lack of interest in the disease, World Health Organization recently declared TB a global emergency and it is clear that there is need for more efficient national TB programs and newly defined research priorities. A more complete epidemiology of tuberculosis will lead to a better identification of index cases and to a more efficient treatment of the disease. Recently, new molecular tools became available for the identification of strains of Mycobacterium tuberculosis (M. tuberculosis), allowing a better recognition of transmission routes of defined strains. Both a standardized restriction-fragment-length-polymorphism-based methodology for epidemiological studies on a large scale and deoxyribonucleic acids (DNA) amplification-based methods that allow rapid detection of outbreaks with multidrug-resistant (MDR) strains, often characterized by high mortality rates, have been developed. This review comments on the existing methods of DNA-based recognition of M. tuberculosis strains and their peculiarities. It also summarizes literature data on the application of molecular fingerprinting for detection of outbreaks of M. tuberculosis, for identification of index cases, for study of interaction between TB and infection with the human immunodeficiency virus, for analysis of the behavior of MDR strains, for a better understanding of risk factors for transmission of TB within communities and for population-based studies of TB transmission within and between countries
Resumo:
Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a) the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT) medium at 28oC is 58±13 hr; (b) differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c) trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d) blood forms are highly infective to mice; (e) blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a) isoenzymatic profiles are characteristic of zymodeme ZB; (b) PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c) schizodeme, randomly amplified polymorphic DNA (RAPD) and DNA fingerprinting analyses were performed
Resumo:
The kinetoplastid membrane protein 11 (KMP-11) has been recently described in Leishmania (Leishmania) donovani as a major component of the promastigote membrane. Two oligonucleotide primers were synthesized to PCR-amplify the entire coding region of New World Leishmania species. The Leishmania (Viannia) panamensis amplification product was cloned, sequenced and the putative amino acid sequence determined. A remarkably high degree of sequence homology was observed with the corresponding molecule of L. (L) donovani and L. (L) infantum (97% and 96%, respectively). Southern blot analysis showed that the KMP-11 locus is conformed by three copies of the gene. The L. (V) panamensis ORF was subsequently cloned in a high expression vector and the recombinant protein was induced and purified from Escherichia coli cultures. Immunoblot analysis showed that 80%, 77% and 100% sera from cutaneous, mucocutaneous and visceral leishmaniasis patients, respectively, recognized the recombinant KMP-11 protein. In a similar assay, 86% of asymptomatic Leishmania-infected individuals showed IgG antibodies against the rKMP-11. We propose that KMP-11 could be used as a serologic marker for infection and disease caused by Leishmania in America.
3rd International Meeting on Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases
Resumo:
The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s )? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission) and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection). Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.
Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis
Resumo:
A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s) by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s) that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR) in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.
Resumo:
Ribotyping has been widely used to characterise the seventh pandemic clone including South American and O139 variants which appeared in 1991 and 1992 respectively. To reveal the molecular basis of ribotype variation we analysed the rrn operons and their flanking regions. All but one variation detected by BglI, the most discriminatory enzyme, was found to be due to changes within the rrn operons, resulting from recombination between operons. The recombinants are detected because of the presence of a BglI site in the 16S gene in three of the nine rrn operons and/or changes of intergenic spacer types of which four variants were identified. As the frequency of rrn recombination is high, ribotyping becomes a less useful tool for evolutionary studies and long term monitoring of the pathogenic clones of Vibrio cholerae as variation could undergo precise reversion by the same recombination event.