222 resultados para Hepatic enzyme
Resumo:
Xylanase activity was isolated from crude extracts of Trichoderma harzianum strains C and 4 grown at 28oC in a solid medium containing wheat bran as the carbon source. Enzyme activity was demonstrable in the permeate after ultrafiltration of the crude extracts using an Amicon system. The hydrolysis patterns of different xylans and paper pulps by xylanase activity ranged from xylose, xylobiose and xylotriose to higher xylooligosaccharides. A purified ß-xylosidase from the Trichoderma harzianum strain released xylose, xylobiose and xylotriose from seaweed, deacetylated, oat spelt and birchwood xylans. The purified enzyme was not active against acetylated xylan and catalyzed the hydrolysis of xylooligosaccharides, including xylotriose, xylotetraose and xylopentaose. However, the enzyme was not able to degrade xylohexaose. Xylanase pretreatment was effective for hardwood kraft pulp bleaching. Hardwood kraft pulp bleached in the XEOP sequence had its kappa number reduced from 13.2 to 8.9 and a viscosity of 20.45 cp. The efficiency of delignification was 33%.
Resumo:
The induction of nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) in etiolated maize (Zea mays) seedlings by UV-B and UV-A radiation, and different levels of photosynthetically active radiation (PAR, 400-700 nm) was investigated by measuring changes in activity, protein quantity and RNA levels as a function of intensity and duration of exposure to the different radiations. Under low levels of PAR, exposure to UV-B radiation but not UV-A radiation for 6 to 24 h caused a marked increase in the enzyme levels similar to that observed under high PAR in the absence of UV-B. UV-B treatment of green leaves following a 12-h dark period also caused an increase in NADP-ME expression. Exposure to UV-B radiation for only 5 min resulted in a rapid increase of the enzyme, followed by a more gradual rise with longer exposure up to 6 h. Low levels of red light for 5 min or 6 h were also effective in inducing NADP-ME activity equivalent to that obtained with UV-B radiation. A 5-min exposure to far-red light following UV-B or red light treatment reversed the induction of NADP-ME, and this effect could be eliminated by further treatment with UV-B or red light. These results indicate that physiological levels of UV-B radiation can have a positive effect on the induction of this photosynthetic enzyme. The reducing power and pyruvate generated by the activity of NADP-ME may be used for respiration, in cellular repair processes and as substrates for fatty acid synthesis required for membrane repair.
Resumo:
Xenobiotic metabolism is influenced by a variety of physiological and environmental factors including pregnancy and nutritional status of the individual. Pregnancy has generally been reported to cause a depression of hepatic monooxygenase activities. Low-protein diets and protein-energy malnutrition have also been associated with a reduced activity of monooxygenases in nonpregnant animals. We investigated the combined effects of pregnancy and protein-energy malnutrition on liver monooxygenase O-dealkylation activity. On pregnancy day 0 rats were assigned at random to a group fed ad libitum (well-nourished, WN) or to a malnourished group (MN) which received half of the WN food intake (12 g/day). WN and MN rats were killed on days 0 (nonpregnant), 11 or 20 of pregnancy and ethoxy- (EROD), methoxy- (MROD) and penthoxy- (PROD) resorufin O-dealkylation activities were measured in liver microsomes. Only minor changes in enzyme activities were observed on pregnancy day 11, but a clear-cut reduction of monooxygenase activities (pmol resorufin min-1 mg protein-1) was noted near term (day 0 vs 20, means ± SD, Student t-test, P<0.05) in WN (EROD: 78.9 ± 15.1 vs 54.6 ± 10.2; MROD: 67.8 ± 10.0 vs 40.9 ± 7.2; PROD: 6.6 ± 0.9 vs 4.3 ± 0.8) and in MN (EROD: 89.2 ± 23.9 vs 46.9 ± 15.0; MROD: 66.8 ± 13.8 vs 27.9 ± 4.4; PROD: 6.3 ± 1.0 vs 4.1 ± 0.6) dams. On pregnancy day 20 MROD was lower in MN than in WN dams. Malnutrition did not increase the pregnancy-induced reduction of EROD and PROD activities. Thus, the present results suggest that the activities of liver monooxygenases are reduced in near-term pregnancy and that protein-energy malnutrition does not alter EROD or PROD in pregnant rats.
Resumo:
We have shown that tissue-type plasminogen activator (tPA) and plasma kallikrein share a common pathway for liver clearance and that the hepatic clearance rate of plasma kallikrein increases during the acute-phase (AP) response. We now report the clearance of tPA from the circulation and by the isolated, exsanguinated and in situ perfused rat liver during the AP response (48-h ex-turpentine treatment). For the sake of comparison, the hepatic clearance of a tissue kallikrein and thrombin was also studied. We verified that, in vivo, the clearance of 125I-tPA from the circulation of turpentine-treated rats (2.2 ± 0.2 ml/min, N = 7) decreases significantly (P = 0.016) when compared to normal rats (3.2 ± 0.3 ml/min, N = 6). The AP response does not modify the tissue distribution of administered 125I-tPA and the liver accounts for most of the 125I-tPA (>80%) cleared from the circulation. The clearance rate of tPA by the isolated and perfused liver of turpentine-treated rats (15.5 ± 1.3 µg/min, N = 4) was slower (P = 0.003) than the clearance rate by the liver of normal rats (22.5 ± 0.7 µg/min, N = 10). After the inflammatory stimulus and additional Kupffer cell ablation (GdCl3 treatment), tPA was cleared by the perfused liver at 16.2 ± 2.4 µg/min (N = 5), suggesting that Kupffer cells have a minor influence on the hepatic tPA clearance during the AP response. In contrast, hepatic clearance rates of thrombin and pancreatic kallikrein were not altered during the AP response. These results contribute to explaining why the thrombolytic efficacy of tPA does not correlate with the dose administered.
Resumo:
This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.
Resumo:
Angiotensin-converting enzyme (ACE) plays a central role in cardiac remodeling associated with pathological conditions such as myocardial infarction. The existence of different cell types in the heart expressing components of the renin-angiotensin system makes it difficult to evaluate their relative role under physiological and pathological conditions. Since myocytes are the predominant cellular constituent of the heart by mass, in the present study we studied the effects of glucocorticoids on ACE activity using well-defined cultures of neonatal rat cardiac myocytes. Under steady-state conditions, ACE activity was present at very low levels, but after dexamethasone treatment ACE activity increased significantly (100 nmol/l after 24 h) in a time-dependent fashion. These results demonstrate the influence of dexamethasone on ACE activity in rat cardiac myocytes. This is consistent with the idea that ACE activation occurs under stress conditions, such as myocardial infarction, in which glucocorticoid levels may increase approximately 50-fold.
Resumo:
The tripeptide Hip-His-Leu was used to standardize a fluorimetric method to measure tissue angiotensin-converting enzyme (ACE) activity in rats. The fluorescence of the o-phthaldialdehyde-His-Leu adduct was compared in the presence and absence of the homogenate (25 µl) to determine whether the homogenate from different tissues interfered with the fluorimetric determination of the His-Leu product. Only homogenates from lung and renal medulla and cortex showed significantly altered fluorescence intensity. To overcome this problem, the homogenate from these tissues were diluted 10 times with assay buffer. The specificity of the assay was demonstrated by the inhibition of ACE activity with 3 µM enalaprilat (MK-422). There was a linear relationship between product formation and incubation time for up to 90 min for homogenates of renal cortex and medulla and liver, for up to 60 min for ventricles and adrenals and for up to 30 min for the aorta, lung and atrium homogenates. In addition, there was a linear relationship between product formation and the amount of protein in the homogenates within the following range: lung, 30-600 µg; renal cortex and medulla, 40-400 µg; atrium and ventricles, 20-200 µg; adrenal, 20-100 µg; aorta, 5-100 µg; liver, 5-25 µg. No peptidase activity against the His-Leu product (31 nmol), assayed in borate buffer (BB), was detected in the different homogenates except the liver homogenate, which was inhibited by 0.1 mM r-chloromercuribenzoic acid. ACE activity in BB was higher than in phosphate buffer (PB) due, at least in part, to a greater hydrolysis of the His-Leu product in PB. ACE activity of lung increased 20% when BB plus Triton was used. Enzyme activity was stable when the homogenates were stored at -20o or -70oC for at least 30 days. These results indicate a condition whereby ACE activity can be easily and efficiently assayed in rat tissue samples homogenized in BB using a fluorimetric method with Hip-His-Leu as a substrate.
Resumo:
Rats infected with the helminth Capillaria hepatica regularly develop septal hepatic fibrosis that may progress to cirrhosis in a relatively short time. Because of such characteristics, this experimental model was selected for testing drugs exhibiting antifibrosis potential, such as pentoxifylline, gadolinium chloride and vitamin A. Hepatic fibrosis was qualitatively and quantitatively evaluated in liver samples obtained by partial hepatectomy and at autopsy. The material was submitted to histological, biochemical and morphometric methods. A statistically significant reduction of fibrosis was obtained with pentoxifylline when administered intraperitoneally rather than intravenously. Gadolinium chloride showed moderate activity when administered prophylactically (before fibrosis had started), but showed a poor effect when fibrosis was well advanced. No modification of fibrosis was seen after vitamin A administration. Hydroxyproline content was correlated with morphometric measurements. The model appears to be adequate, since few animals die of the infection, fibrosis develops regularly in all animals, and the effects of different antifibrotic drugs and administration protocols can be easily detected.
Resumo:
Bradykinin has been reported to act as a growth factor for fibroblasts, mesangial cells and keratinocytes. Recently, we reported that bradykinin augments liver regeneration after partial hepatectomy in rats. Angiotensin-converting enzyme (ACE) is also a powerful bradykinin-degrading enzyme. We have investigated the effect of ACE inhibition by lisinopril on liver regeneration after partial hepatectomy. Adult male Wistar rats underwent 70% partial hepatectomy (PH). The animals received lisinopril at a dose of 1 mg kg body weight-1 day-1, or saline solution, intraperitoneally, for 5 days before hepatectomy, and daily after surgery. Four to six animals from the lisinopril and saline groups were sacrificed at 12, 24, 36, 48, 72, and 120 h after PH. Liver regeneration was evaluated by immunohistochemical staining for proliferating cell nuclear antigen using the PC-10 monoclonal antibody. The value for the lisinopril-treated group was three-fold above the corresponding control at 12 h after PH (P<0.001), remaining elevated at approximately two-fold above control values at 24, 36, 48 (P<0.001), and at 72 h (P<0.01) after PH, but values did not reach statistical difference at 120 h after PH. Plasma ACE activity measured by radioenzymatic assay was significantly higher in the saline group than in the lisinopril-treated group (P<0.001), with 81% ACE inhibition. The present study shows that plasma ACE inhibition enhances liver regeneration after PH in rats. Since it was reported that bradykinin also augments liver regeneration after PH, this may explain the liver growth stimulating effect of ACE inhibitors.
Resumo:
Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%). Removal of the gonads in both males and females (comparison between castrated groups) increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48%) CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.
Resumo:
Renin is an enzyme involved in the stepwise generation of angiotensin II. Juxtaglomerular cells are the main source of plasma renin, but renin activity has been detected in other cell types. In the present study we evaluated the presence of renin mRNA in adult male Wistar rat and mouse (C-57 Black/6) mesangial cells (MC) and their ability to process, store and release both the active and inactive forms of the enzyme. Active renin and total renin content obtained after trypsin treatment were estimated by angiotensinogen consumption analyzed by SDS-PAGE electrophoresis and quantified by angiotensin I generation by HPLC. Renin mRNA, detected by RT-PCR, was present in both rat and mouse MC under basal conditions. Active renin was significantly higher (P<0.05) in the cell lysate (43.5 ± 5.7 ng h-1 10(6) cells) than in the culture medium (12.5 ± 2.5 ng h-1 10(6) cells). Inactive prorenin content was similar for the intra- and extracellular compartments (9.7 ± 3.1 and 3.9 ± 0.9 ng h-1 10(6) cells). Free active renin was the predominant form found in both cell compartments. These results indicate that MC in culture are able to synthesize and translate renin mRNA probably as inactive prorenin which is mostly processed to active renin inside the cell. MC secrete both forms of the enzyme but at a lower level compared with intracellular content, suggesting that the main role of renin synthesized by MC may be the intracellular generation of angiotensin II.
Resumo:
The interaction of the product of H2O2 and (PhSe)2 with delta-aminolevulinate dehydratase (delta-ALA-D) from mammals and plants was investigated. (PhSe)2 inhibited rat hepatic delta-ALA-D with an IC50 of 10 µM but not the enzyme from cucumber leaves. The reaction of (PhSe)2 with H2O2 for 1 h increased the inhibitory potency of the original compound and the IC50 for animal delta-ALA-D inhibition was decreased from 10 to 2 µM. delta-ALA-D from cucumber leaves was also inhibited by the products of reaction of (PhSe)2 with H2O2 with an IC50 of 4 µM. The major product of reaction of (PhSe)2 with H2O2 was identified as seleninic acid and produced an intermediate with a lambdamax at 265 nm after reaction with t-BuSH. These results suggest that the interaction of (PhSe)2 with mammal delta-ALA-D requires the presence of cysteinyl residues in close proximity. Two cysteine residues in spatial proximity have been recently described for the mammalian enzyme. Analysis of the primary structure of plant delta-ALA-D did not reveal an analogous site. In contrast to (PhSe)2, seleninic acid, as a result of the higher electrophilic nature of its selenium atom, may react with additional cysteinyl residue(s) in mammalian delta-ALA-D and also with cysteinyl residues from cucumber leaves located at a site distinct from that found at the B and A sites in mammals. Although the interaction of organochalcogens with H2O2 may have some antioxidant properties, the formation of seleninic acid as a product of this reaction may increase the toxicity of organic chalcogens such as (PhSe)2.
Resumo:
The aim of the present study was to investigate the effects of converting enzyme inhibition by captopril on ECG parameters in aged rats. Four-month-old male rats received captopril dissolved in tap water (0.5 mg/l) or tap water for 2 or 20 months. At the end of treatment, under anesthesia, RR and PR interval, P wave and QRS duration, QT and corrected QT interval were measured in all animals. On the following day, chronic ECG (lead II) recordings were performed to quantify supraventricular (SVPB) or ventricular premature beats (VPB). After sacrifice, the hearts were removed and weighed. RR interval was similar in young and untreated aged rats, but significantly larger in aged rats treated with captopril. P wave and QRS length did not differ among groups. PR interval was significantly larger in old than in young rats and was not affected by captopril. Corrected QT interval was larger in aged than in young rats (117 ± 4 vs 64 ± 6 ms, P<0.05) and was reduced by captopril (71 ± 6 ms, P<0.05). VPB were absent in young rats and highly frequent in untreated old animals (8.4 ± 3.0/30 min). Captopril significantly reduced VPB in old rats (0.3 ± 0.1/30 min, P<0.05). The cardiac hypertrophy found in untreated aged rats was prevented by captopril (3.44 ± 0.14 vs 3.07 ± 0.10 mg/g, P<0.05). The beneficial effects of angiotensin converting enzyme inhibition on the rat heart during the aging process are remarkable.
Resumo:
Few data are available in the literature regarding the effect of pentosan polysulfate (PPS) on normal and fibrotic rat livers. In addition, the combination of PPS and carbon tetrachloride (CCl4) has not been studied so far. The objective of this study was to assess the effect of PPS on rat livers treated or not with CCl4 for the induction of liver fibrosis. The study consisted of four stages: 1) hepatic fibrosis induction with CCl4 (N = 36 rats); 2) evaluation of the effect of PPS on CCl4-induced hepatic fibrosis (N = 36 rats); 3) evaluation of the effect of higher doses of PPS in combination with CCl4 (N = 50 rats); 4) evaluation of the presence of an enzymatic inductor effect by PPS (N = 18 rats) using the sodium pentobarbital test which indirectly evaluates hepatic microsomal enzyme activity in vivo. Adult (60 to 70 days) male Wistar rats weighing 180 to 220 g were used. All animals receiving 0.5 ml 8% CCl4 (N = 36) developed hepatic fibrosis, and after 8 weeks they also developed cirrhosis. No delay or prevention of hepatic fibrosis was observed with the administration of 5 mg/kg PPS (N = 8) and 1 mg/kg PPS (N = 8) 1 h after the administration of CCl4, but the increased hepatotoxicity resulting from the combination of the two substances caused massive hepatic necrosis in most rats (N = 45). PPS (40 mg/kg) alone caused hepatic congestion only after 8 weeks, but massive hepatic necrosis was again observed in association with 0.5 ml CCl4 after 1 to 4 weeks of treatment. Unexpectedly, sleeping time increased with time of PPS administration (1, 2, or 3 weeks). This suggests that PPS does not function as an activator of the hepatic microsomal enzymatic system. Further studies are necessary in order to clarify the unexpected increase in hepatotoxicity caused by the combination of CCl4 and high doses of PPS, which results in massive hepatic necrosis.
Resumo:
To identify early metabolic abnormalities in type 2 diabetes mellitus, we measured insulin secretion, sensitivity to insulin, and hepatic insulin extraction in 48 healthy normal glucose-tolerant Brazilians, first-degree relatives of type 2 diabetic patients (FH+). Each individual was matched for sex, age, weight, and body fat distribution with a person without history of type 2 diabetes (FH-). Both groups were submitted to a hyperglycemic clamp procedure (180 mg/dl). Insulin release was evaluated in its two phases. The first was calculated as the sum of plasma insulin at 2.5, 5.0, 7.5, and 10.0 min after the beginning of glucose infusion, and the second as the mean plasma insulin level in the third hour of the clamp procedure. Insulin sensitivity index (ISI) was the mean glucose infusion rate in the third hour of the clamp experiment divided by the mean plasma insulin concentration during the same period of time. Hepatic insulin extraction was determined under fasting conditions and in the third hour of the clamp procedure as the ratio between C-peptide and plasma insulin levels. FH+ individuals did not differ from FH- individuals in terms of the following parameters [median (range)]: a) first-phase insulin secretion, 174 (116-221) vs 207 (108-277) µU/ml, b) second-phase insulin secretion, 64 (41-86) vs 53 (37-83) µU/ml, and c) ISI, 14.8 (9.0-20.8) vs 16.8 (9.0-27.0) mg kg-1 min-1/µU ml-1. Hepatic insulin extraction in FH+ subjects was similar to that of FH- ones at basal conditions (median, 0.27 vs 0.27 ng/µU) and during glucose infusion (0.15 vs 0.15 ng/µU). Normal glucose-tolerant Brazilian FH+ individuals well-matched with FH- ones did not show defects of insulin secretion, insulin sensitivity, or hepatic insulin extraction as tested by hyperglycemic clamp procedures.