278 resultados para Fluorimetric determination
Resumo:
In this paper, a silica-gel-modified carbon paste electrode (Si-gel/CPE) was used to determine the anti-cancer drug emodin by anodic stripping differential pulse voltammetry (ASDPV). The effects of the silica-gel content, the pH of the supporting electrolyte, and the scan rate on the oxidation current of emodin were investigated. The oxidation currents of emodin obtained from ASDPV measurements were linearly correlated with the concentration in the range of 5.0 × 10-9 to 300.0 × 10-9 mol L-1. The limit of detection was determined to be 1.5 × 10-9 mol L-1. The current method was successfully applied to determine emodin in a knotweed root sample, with recovery rate of 92.5% to 98.3%.
Resumo:
This paper describes the optimization of a multiresidue chromatographic analysis for the identification and quantification of 20 pesticides in bovine milk, including three carbamates, a carbamate oxime, six organophosphates, two strobilurins, a pyrethroid, an oxazolidinedione, an aryloxyphenoxypropionate acid/ester, a neonicotinoid, a dicarboximide, and three triazoles. The influences of different chromatographic columns and gradients were evaluated. Furthermore, four different extraction methods were evaluated; each utilized both different solvents, including ethyl acetate, methanol, and acetonitrile, and different workup steps. The best results were obtained by a modified QuEChERS method that lacked a workup step, and that included freezing the sample for 2 hours at -20 ºC. The results were satisfactory, yielding coefficients of variation of less than 20%, with the exception of the 50 µg L-1 sample of famoxadone, and recoveries between 70 and 120%, with the exception of acephate and bifenthrin; however, both analytes exhibited coefficients of variation of less than 20%.
Resumo:
A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) followed by graphite furnace atomic absorption spectrometry (GFAAS). Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.
Resumo:
Bioorganic and biological chemistry have been found to be highly motivating to undergraduate students and in this context, biochemical blood parameter analysis emerges as highly attractive content. In this proposal, several aspects related to analyses of glucose, cholesterol and triglycerides using the enzymatic colorimetric method were involved, and the findings have at least two relevant implications: i) introducing students to connections between organic chemistry and biology based on enzymatic processes, including reactivity and mechanistic aspects; ii) performing a micro scale bioassay analysis. The proposal requires two theoretical classes (2 h per class) and one practical class (4 h).
Resumo:
A simple and sensitive spectrophotometric method is proposed for the simultaneous determination of protocatechuic acid and protocatechuic aldehyde. The method is based on the difference in the kinetic rates of the reactions of analytes with [Ag(NH3)2]+ in the presence of polyvinylpyrrolidone to produce silver nanoparticles. The data obtained were processed by chemometric methods using principal component analysis artificial neural network and partial least squares. Excellent linearity was obtained in the concentration ranges of 1.23-58.56 µg mL-1 and 0.08-30.39 µg mL-1 for PAC and PAH, respectively. The limits of detection for PAC and PAH were 0.039 and 0.025 µg mL-1, respectively.
Resumo:
The microencapsulation of palm oil may be a mechanism for protecting and promoting the controlled release of its bioactive compounds. To optimize the microencapsulation process, it is necessary to accurately quantify the palm oil present both external and internal to the microcapsules. In this study, we developed and validated a spectrophotometric method to determine the microencapsulation efficiency of palm oil by complex coacervation. We used gelatin and gum arabic (1:1) as wall material in a 5% concentration (w/v) and palm oil in the same concentration. The coacervates were obtained at pH 4.0 ± 0.01, decanted for 24 h, frozen (−40 ºC), and lyophilized for 72 h. Morphological analyzes were then performed. We standardized the extraction of the external palm oil through five successive washes with an organic solvent. We then explored the best method for rupturing the microcapsules. After successive extractions with hexane, we determined the amount of palm oil contained in the microcapsules using a spectrophotometer. The proposed method was shown to be of low cost, fast, and easy to implement. In addition, in the validation step, we confirmed the method to be safe and reliable, as it proved to be specific, accurate, precise, and robust.
Resumo:
In this study, dispersive liquid-liquid microextraction based on the solidification of floating organic droplets was used for the preconcentration and determination of thorium in the water samples. In this method, acetone and 1-undecanol were used as disperser and extraction solvents, respectively, and the ligand 1-(2-thenoyl)-3,3,3-trifluoracetone reagent (TTA) and Aliquat 336 was used as a chelating agent and an ion-paring reagent, for the extraction of thorium, respectively. Inductively coupled plasma-optical emission spectrometry was applied for the quantitation of the analyte after preconcentration. The effect of various factors, such as the extraction and disperser solvent, sample pH, concentration of TTA and concentration of aliquat336 were investigated. Under the optimum conditions, the calibration graph was linear within the thorium content range of 1.0-250 µg L-1 with a detection limit of 0.2 µg L-1. The method was also successfully applied for the determination of thorium in the different water samples.
LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS
Resumo:
The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.
Resumo:
A method has been developed for the extraction and spectrophotometric determination of Hg2+ in a concentration range of 0.2-1.0 mg L-1; following the Lambert-Beer's law using high molecular weight quaternary ammonium salts dissolved in chloroform. The metal complex anion was determined in the extract in the region UV (260 nm).
Resumo:
The determination of the total calcium in juice, syrups, and other products of the sugar industry is investigated. Total calcium and free calcium is determinated by AAS and employing Ca-selective electrode respectively. A coefficient is obtained for the relation of total calcium with respect to free calcium. The coefficient is employed to determine the content of total calcium in accordance with the following equation.
Resumo:
A sorption concentration method using impregnated silica has been developed to determine small concentration of lead in water by Atomic Absorption Spectrometry.
Resumo:
Herbicides such as trifluralin, simazine, atrazine, metribuzin and metolachlor are used in Brazilian agriculture. The efficiency of a small scale method for determination of these herbicides and two degradation products (deisopropylatrazine and deethylatrazine) in soil samples was evaluated. The compounds were extracted from soil samples (5 g) with 20 ml of ethyl acetate in a mechanical shaker for 50 min. Following the extraction, the supernatant was dried through anhydrous sodium sulphate, concentrated and analysed by high resolution gas chromatography (HRGC) with thermionic specific detection (TSD). Mean recoveries obtained from soil samples fortified at three different levels ranged from 81 to 115% with relative standard deviation (RSD) values varying from 1.2 to 12.7%. The method detection limits ranged from 0.01 to 0.06 mg kg-1. The methodology was applied using soil samples from farms located near the town of Araraquara, in the State of São Paulo, Brazil.
Resumo:
A simple, precise, rapid and low-cost potentiometric method for captopril determination in pure form and in pharmaceutical preparations is proposed. Captopril present in tablets containing known quantity of drug was potentiometrically titrated in aqueous solution with NaOH using a glass pH electrode, coupled to an autotitrator. No interferences were observed in the presence of common components of the tablets as lactose, microcrystalline cellulose, croscarmellose sodium, starch and magnesium stearate. The analytical results obtained by applying the proposed method compared very favorably with those obtained by the United States Pharmacopoeia Standard procedure. Recovery of captopril from various tablet dosage formulations range from 98.0 to 102.0%.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.