253 resultados para FORMULATIONS
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.
Resumo:
The physicochemical properties (solubilization, structural organization and stability) of meso-tetrakis(p-methoxyphenyl)porphyrin (TMPP), a promising photosensitizer for photodynamic therapy, solubilized in polymeric micelles of tri-block copolymers PluronicTM P-123 and F-127, were studied. The formulations obtained by the solid dispersion method led to monomerization of TMPP in these copolymers. Solubility studies showed that P-123 solubilizes double the photosensitizer than F-127. The self-aggregation phenomenon was affected by the [TMPP]/[poloxamer] ratio and medium temperature. The decrease in the temperature of these systems promoted the formation of different kinds of TMPP aggregates intrinsically connected with the structural changes occurring in the micelles.
Resumo:
Nanotechnology is currently one of the fastest growing scientific fields. The products of this science have become part of our everyday lives. However, to date, regulatory agencies have not yet established a single definition for nanomaterials and nanotechnology. Therefore, each country has its own definitions and legislation to control products containing nanomaterials. Being relatively new materials, there are no long-term studies showing their impact on human health and the environment. Consequently, countries control the amount of nanomaterials present in cosmetics, allowing the end consumer to choose which cosmetic to use, by choosing products with or without nanomaterials. Therefore, the primary objective of this study was to identify the most used nanomaterials in cosmetics and verify whether these formulations are in accordance with the laws in force in the United States, the European Union and Brazil, thereby determining if the cosmetics on the market are in line with the existing laws in these three economic powers. This study is unique and will contribute to furthering the discussion on existing laws pertinent to the use of nanotechnology in cosmetics.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
Two simple, rapid and cost-effective methods based on titrimetric and spectrophotometric techniques are described for the assay of RNH in bulk drug and in dosage forms using silver nitrate, mercury(II)thiocyanate and iron(III)nitrate as reagents. In titrimetry, an aqueous solution of RNH is treated with measured excess of silver nitrate in HNO3 medium, followed by determination of unreacted silver nitrate by Volhard method using iron(III) alum indicator. Spectrophotometric method involve the addition a known excess of mercury(II)thiocyanate and iron(III)nitrate to RNH, followed by the measurement of the absorbance of iron(III)thiocyante complex at 470 nm. Titrimetric method is applicable over 4-30 mg range and the reaction stoichiometry is found to be 1:1 (RNH: AgNO3). In the spectrophotometric method, the absorbance is found to increase linearly with concentration of RNH which is corroborated by the correlation coefficient of 0.9959. The system obey Beer's law for 5-70 µg mL-1. The calculated apparent molar absorptivity and sandell sensitivity values are found to be 3.27 ´ 10³ L mol-1 cm-1, 0.107 µg cm-2 respectively. The limits of detection and quantification are also reported for the spectrophotometric method. Intra-day and inter-day precision and accuracy of the methods were evaluated as per ICH guidelines. The methods were successfully applied to the assay of RNH in formulations and the results were compared with those of a reference method by applying Student's t and F-tests. No interference was observed from common pharmaceutical excipients. The accuracy of the methods was further ascertained by performing recovery tests by standard addition method.
Resumo:
A simple, rapid and sensitive spectrophotometric method has been developed for the determination of methyldopa in pharmaceutical formulations. The method is based on the reaction between tetrachloro-p-benzoquinone (p-chloranil) and methyldopa, accelerated by hydrogen peroxide (H2O2), producing a violet-red compound (λmax = 535 nm) at ambient temperature (25.0 ± 0.2 ºC). Experimental design methodologies were used to optimize the measurement conditions. Beer's law is obeyed in a concentration range from 2.10 x 10-4 to 2.48 x 10-3 mol L-1 (r = 0.9997). The limit of detection was 7.55 x 10-6 mol L-1 and the limit of quantification was 2.52 x 10-5 mol L-1. The intraday precision and interday precision were studied for 10 replicate analyses of 1.59 x 10-3 mol L-1 methyldopa solution and the respective coefficients of variation were 0.7 and 1.1 %. The proposed method was successfully applied to the determination of methyldopa in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95 % confidence level.
Resumo:
Two simple sensitive and reproducible spectrophotometric methods have been developed for the determination of metronidazole either in pure form or in their tablets. The proposed methods are based on the reduction of the nitro group to amino group of the drug. The reduction of metronidazole was carried out with zinc powder and 5 N hydrochloric acid at room temperature in methanol. The resulting amine was then subjected to a condensation reaction with aromatic aldehyde namely, vanillin and p-dimethyl amino benzaldehyde (PDAB) to yield yellow colored Schiff's bases. The formed Schiff's bases are quantified spectrophotometrically at their absorption maxima at 422 nm for vanillin and 494 nm for PDAB. Beer's law was obeyed in the concentration ranges 10 to 65 µg mL-1 and 5 to 40 µg mL-1 with a limit of detection (LOD) of 0.080 µg mL-1 and 0.090 µg mL-1 for vanillin and PDAB, respectively. The mean percentage recoveries were found to be 100.05 ± 0.37 and 99.01 ± 0.76 for the two methods respectively. The proposed methods were successfully applied to determine the metronidazole in their tablet formulations and the results compared favorably to that of reference methods. The proposed methods are recommended for quality control and routine analysis.
Resumo:
The application of multivariate calibration techniques to multicomponent analysis by UV-VIS molecular absorption spectrometry is a powerful tool for simultaneous determination of several chemical species. However, when this methodology is accomplished manually, it is slow and laborious, consumes high amounts of reagents and samples, is susceptible to contaminations and presents a high operational cost. To overcome these drawbacks, a flow-batch analyser is proposed in this work. This analyser was developed for automatic preparation of standard calibration and test (or validation) mixtures. It was applied to the simultaneous determination of Cu2+, Mn2+ and Zn2+ in polyvitaminic and polymineral pharmaceutical formulations, using 4-(2-piridilazo) resorcinol as reagent and a UV-VIS spectrophotometer with a photodiode array detector. The results obtained with the proposed system are in good agreement with those obtained by flame atomic absorption spectrometry, which was employed as reference method. With the proposed analyser, the preparation of calibration and test mixtures can be accomplished about four hours, while the manual procedure requires at least two days. Moreover, it consumes smaller amounts of reagents and samples than the manual procedure. After the preparation of calibration and test mixtures, 60 samples h-1 can be carried out with the proposed flow-batch analyser.
Resumo:
Three simple and sensitive spectrophotometric methods are described for the determination of ofloxacin (OFX) in pharmaceuticals and in spiked human urine. First and second methods are based on the measurement of absorbance of OFX in 0.1 M HCl at 293 nm (method A) and 0.1 M NaOH at 287 nm, respectively. The third method is based on the measurement of 2:1 complex formed between OFX and iron(III) in H2SO4 medium, the complex peaking at 420 nm (method C). The optimum conditions for all the three methods are optimized. Beer's law is obeyed over the ranges 0.63-12.5 using method A and method B, and 10-120 µg mL-1 using method C. The apparent molar absorptivity values are calculated to be 3.5 × 10(4), 2.76 × 10(4) and 2.51 × 10³ L mol-1cm-1 for method A, method B and method C, respectively. The Sandell sensitivity, limit of detection (LOD) and limit quantification (LOQ) values are also reported. All the methods were validated in accordance with current ICH guidelines. The developed methods were employed with high degree of precision and accuracy for the estimation of total drug content in commercial tablet formulations of DOX. The results obtained from human spiked urine are satisfactory and recovery values are in the range 95.5-106.6%.
Resumo:
A simple, sensitive and reproducible spectrophotometric method was developed for the determination of sitagliptin phosphate in bulk and in pharmaceutical formulations. The proposed method is based on condensation of the primary amino group of sitagliptin phosphate with acetyl acetone and formaldehyde producing a yellow colored product, which is measured spectrophotometrically at 430nm. The color was stable for about 1 hour. Beer's law is obeyed over a concentration range of 5-25 µg/ml. The apparent molar absorptivity and Sandell sensitivity values are 1.067 x 10(4) Lmol-1cm-1 and 0.0471 µgcm-2 respectively. All the variables were studied to optimize the reaction conditions. No interference was observed in the presence of common pharmaceutical excipients. The validity of the method was tested by analyzing sitagliptin phosphate in its pharmaceutical preparations. Good recoveries were obtained. The developed method was successfully employed for the determination of sitagliptin phosphate in various pharmaceutical preparations.
Resumo:
A simple and rapid spectrophotometric method for the determination of nevirapine is described. The method is based on the reaction of nevirapine with tetrathiocyanatocobalt(II) ion in buffer of pH 4 to form the corresponding complex. Beer's law is obeyed in the range of 0.2 - 2.0 µg mL-1 for nevirapine. The optical parameters such as molar absorptivity, Sandell's sensitivity, detection limit and quantitation limit were found to be 1.16× 10(4) Lmol-1cm-1, 2.09 X 10-3 µg cm-2, 0.073 µg mL-1 and 0.222 µg mL-1 respectively. The optimum reaction conditions and other analytical parameters were evaluated. The statistical evaluation of the method was examined by determining intra-day and inter-day precision. The proposed method has been successfully applied for the determination of nevirapine in pharmaceutical formulations.
Resumo:
A simple, rapid and sensitive spectrophotometric method for the determination of captopril (CPT) in pharmaceutical formulations is proposed. This method is based on the reduction reaction of ammonium molybdate, in the presence of sulphuric acid, for the group thiol of CPT, producing a green compound (λ max 407 nm). Beer's law is obeyed in a concentration range of 4.60 x 10-4 - 1.84 x 10-3 mol l-1 of CPT with an excellent correlation coefficient (r = 0.9995). The limit of detection and limit of quantification were 7.31 x 10-6 e 2.43 x 10-5 mol l-1 of CPT, respectively. The proposed method was successfully applied to the determination of CPT in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the official reported method at 95 % confidence level.
Resumo:
In this paper the conductometric titration of propranolol hydrochloride in pharmaceutical formulations using silver nitrate as titrant is proposed. The method was based on the formation of an insoluble salt (AgCl(s)) between the chloride of propranolol hydrochloride molecule and Ag(I) ions of the titrant AgNO3. The effect of the PROP-AgNO3 concentrations and the interval of time between the successive additions of the titrant on the shape of the titration curve were studied. The obtained recoveries for four samples ranged from 96.8 to 105%. The proposed method was successfully applied in the determination of propranolol hydrochloride in several pharmaceutical formulations, with results in close agreement at a 95 % confidence level with those obtained using official spectrophotometric method.
Resumo:
To identify formulations of biological agents that enable survival, stability and a good surface distribution of the antagonistic agent, studies that test different application vehicles are necessary. The efficiency of two killer yeasts, Wickerhamomyces anomalus (strain 422) and Meyerozyma guilliermondii (strain 443), associated with five different application vehicles, was assessed for the protection of postharvest papayas. In this study, after 90 days of incubation at 4ºC, W. anomalus (strain 422) and M. guilliermondii (strain 443) were viable with all application vehicles tested. Fruits treated with different formulations (yeasts + application vehicles) had a decreased severity of disease (by at least 30%) compared with untreated fruits. The treatment with W. anomalus (strain 422) + 2% starch lowered disease occurrence by 48.3%. The most efficient treatments using M. guilliermondii (strain 443) were those with 2% gelatin or 2% liquid carnauba wax, both of which reduced anthracnose by 50% in postharvest papayas. Electron micrographs of the surface tissues of the treated fruits showed that all application vehicles provided excellent adhesion of the yeast to the surface. Formulations based on starch (2%), gelatin (2%) and carnauba wax (2%) were the most efficient at controlling fungal diseases in postharvest papayas.
Resumo:
In Brazil, Fusarium head blight (FHB) affecting wheat can cause up to 39.8% damage. Resistant cultivars are not available yet; thus, short-term disease control relies on the use of fungicides. The first step to improve control is to monitor fungal populations that are sensitivity to chemicals in order to achieve efficient FHB management. In vitro experiments were conducted to evaluate the inhibitory concentration (IC50) of fungicides for both mycelial growth and conidial germination of ten Fusarium graminearum isolates. The following demethylation inhibitor (DMI) fungicides were tested: metconazole, prothioconazole and tebuconazole. In addition, pyraclostrobin and trifloxystrobin were included, representing QoI fungicides, as well as three co-formulations containing metconazole + pyraclostrobin, prothioconazole + trifloxystrobin, and tebuconazole + trifloxystrobin. For mycelial growth, the overall mean IC50 of isolates was: metconazole 0.07, prothioconazole 0.1, and tebuconazole 0.19 mg/L. For the co-formulations, it was: prothioconazole + trifloxystrobin 0.08, tebuconazole + trifloxystrobin 0.12, and metconazole + pyraclostrobin 0.14 mg/L. Regarding spore germination inhibition, IC50 for prothioconazole + trifloxystrobin was 0.06, for tebuconazole + trifloxystrobin, 0.12 mg/L, for QoI alone pyraclostrobin, was 0.09, and for trifloxystrobin, 0.28 mg/L. There was a sensitivity shift among isolates and the highest fungitoxicity to F. graminearum was confirmed for prothioconazole, metconazole and tebuconazole .