189 resultados para Antigenic
Resumo:
Pregnant cows infected with noncytopathic (NCP) isolates of bovine viral diarrhea virus (BVDV) between days 40 and 120 days of gestation frequently deliver immunotolerant, persistently infected (PI) calves. We herein report the characterization of PI calves produced experimentally through inoculation of pregnant cows with a pool of Brazilian BVDV-1 (n=2) and BVDV-2 isolates (n=2) between days 60 and 90 of gestation. Two calves were born virus positive, lacked BVDV antibodies, but died 7 and 15 days after birth, respectively. Six other calves were born healthy, seronegative to BVDV, harbored and shed virus in secretions for up to 210 days. Analysis of the antigenic profile of viruses infecting these calves at birth and 30 days later with a panel of monoclonal antibodies indicated two patterns of infection. Whereas three calves apparently harbored only one isolate (either a BVDV-1 or BVDV-2), co-infection by two antigenically distinct challenge viruses was demonstrated in three PI calves. Moreover, testing the viruses obtained from the blood of PI calves by an RT-PCR able to differentiate between BVDV-1 and BVDV-2 confirmed the presence/persistence of two co-infecting viruses of different genotypes (BVDV-1 and BVDV-2) in these animals. These findings indicate that persistent infection of fetuses/calves - a well characterized consequence of fetal infection by BVDV - may be established concomitantly by more than one isolate, upon experimental inoculation. In this sense, mixed persistent infections with antigenically distinct isolates may help in understanding the immunological and molecular basis of BVDV immunotolerance and persistence.
Resumo:
Bovine herpesvirus 5 (BoHV-5) is an important pathogen of cattle in South America and efforts have been made to produce safer and more effective vaccines. In addition to afford protection, herpesvirus vaccines should allow serological differentiation of vaccinated from naturally, latently infected animals. We previously reported the construction and characterization in vitro of a double mutant BoHV-5 (BoHV-5gE/TK Δ) lacking the genes encoding thymidine kinase (tk) for attenuation, and glycoprotein E (gE) as the antigenic marker, as a vaccine candidate strain (Brum et al. 2010a). The present article reports an investigation on the attenuation and immunogenicity of this recombinant in calves. In a first experiment, 80 to 90-day-old seronegative calves (n=6) inoculated intranasally with the recombinant (titer of 10(7.5)TCID50) shed virus in low to moderate titers in nasal secretions for up to 6 days, yet did not develop any respiratory, systemic or neurological signs of infection. At day 30 post-infection (pi) all calves had BoHV-5 specific neutralizing (VN) antibodies in titers of 4 to 8 and were negative for anti-gE antibodies in a commercial ELISA test. Administration of dexamethasone (0.1mg/kg/day during 5 days) to four of these calves at day 42 pi did not result in virus shedding or increase in VN titers, indicating lack of viral reactivation. Secondly, a group of 8-month-old calves (n=9) vaccinated intramuscularly (IM) with the recombinant virus (10(7.5)TCID50/animal) did not shed virus in nasal secretions, remained healthy and developed VN titers from 2 to 8 at day 42 post-vaccination (pv), remaining negative for gE antibodies. Lastly, 21 calves (around 10 months old) maintained under field conditions were vaccinated IM with the recombinant virus (titer of 10(7.3)TCID50). All vaccinated animals developed VN titers from 2 to 16 at day 30 pv. A boost vaccination performed at day 240 pv resulted in a rapid and strong anamnestic antibody response, with VN titers reaching from 16 to 256 at day 14 post-booster. Again, serum samples remained negative for gE antibodies. Selected serum samples from vaccinated animals showed a broad VN activity against nine BoHV-5 and eight BoHV-1 field isolates. These results show that the recombinant virus is attenuated, immunogenic for calves and induces an antibody response differentiable from that induced by natural infection. Thus, the recombinant BoHV-5gE/TKΔ is an adequate candidate strain for a modified live vaccine.
Resumo:
The study of canine immunohematology is very important for veterinary transfusion medicine. The objective of this study was to determine the DEA blood type frequencies in a purebred canine blood donor population from Porto Alegre, RS, Brazil. One hundred clinically healthy purebred dogs were chosen, 20 dogs from each breed (Great Dane, Rottweiler, Golden Retriever, German Shepherd and Argentine Dogo). Blood samples were taken in ACD-A tubes and the MSU hemagglutination tube test (MI, USA) was used to determine the blood types. The studied population presented general frequencies of 61% for DEA 1.1, 22% for DEA 1.2, 7% for DEA 3, 100% for DEA 4, 9% for DEA 5 and 16% for DEA 7. A significant association was found between breeds and certain combinations of blood types in this population. The results are in agreement with the literature since most part of the canine population studied was positive for DEA 1.1, the most antigenic blood type in dogs. Differences were found among the studied breeds and those should be considered when selecting a blood donor. The knowledge of blood types frequencies and their combinations in different canine populations, including different breeds, is important because it shows the particularities of each group, helps to keep a data bank of local frequencies and minimizes the risks of transfusion reactions.
Resumo:
Since the late 1970s, canine parvovirus type 2 (CPV-2) has emerged as a causative agent of fatal severe acute hemorrhagic enteritis in dogs. To date, three antigenic types of CPV-2 were described worldwide (CPV-2a/b/c). This study was conducted to determine the variants of CPV-2 circulating in dogs from the Cuiabá Municipality in Midwestern Brazil. Out of 50 fecal samples, collected between 2009 and 2011, 27 tested positive for CPV-2. A 583 bp fragment of the VP2 gene was amplified by PCR, 13 representative samples were analyzed further by DNA sequencing. All strains were characterized as CPV-2c, displayed a low genetic variability although observed several amino acid substitution. These findings indicated that CPV-2c has been circulating in dogs from the Cuiabá Municipality in Midwestern Brazil.
Resumo:
Plants present a cost effective production system for high value proteins. There is an increasing world demand for cheap vaccines that can be readily administered to the population, especially in economically less developed regions. A promising concept is the production of vaccines in plants that could be grown locally. Expression of antigenic peptides in the palatable parts of plants can lead to the production of edible active vaccines. Two major strategies are: i) to express antigens in transgenic plants, and ii) to produce antigenic peptides on the surface of plant viruses that could be used to infect host plants. This review considers the experimental data and early results for both strategies, and discusses the potential and problems of this new technology
Resumo:
The role of different cytokines in the peripheral blood mononuclear cell (PBMC) proliferative response and in in vitro granuloma formation was evaluated in a cross-sectional study with patients with the different clinical forms and phases of Schistosoma mansoni infection, as well as a group of individuals "naturally" resistant to infection named normal endemic (NE). The blockage of IL-4 and IL-5 using anti-IL-4 and anti-IL-5 antibodies significantly reduced the PBMC proliferative response to soluble egg (SEA) and adult worm (SWAP) antigens in acute (ACT), chronic intestinal (INT) and hepatosplenic (HS) patients. Similar results were obtained in the in vitro granuloma formation. Blockage of IL-10 had no significant effect on either assay using PBMC from ACT or HS. In contrast, the addition of anti-IL-10 antibodies to PBMC cultures from INT patients significantly increased the proliferative response to SEA and SWAP as well as the in vitro granuloma formation. Interestingly, association of anti-IL-4 and anti-IL-10 antibodies did not increase the PBMC proliferative response of these patients, suggesting that IL-10 may act by modulating IL-4 and IL-5 secretion. Addition of recombinant IL-10 decreased the proliferative response to undetectable levels when PBMC from patients with the different clinical forms were used. Analysis of IFN-g in the supernatants showed that PBMC from INT patients secreted low levels of IFN-g upon antigenic stimulation. In contrast, PBMC from NE secreted high levels of IFN-g. These data suggest that IL-10 is an important cytokine in regulating the immune response and possibly controlling morbidity in human schistosomiasis mansoni, and that the production of IFN-g may be associated with resistance to infection.
Resumo:
The major aim of this study was to characterize a soluble Plasmodium falciparum antigen from the plasma of malaria-infected humans and Plasmodium falciparum culture supernatants, using immunoabsorbent techniques and Western blotting. An Mr 60-kDa protein was isolated from the plasma of patients with Plasmodium falciparum malaria by affinity chromatography using rabbit anti-Proteus spp GDH(NADP+) serum as ligand. This protein, present in plasma of patients with acute Plasmodium falciparum infection, in Plasmodium falciparum culture supernatants, and in immune complexes, was tested with Plasmodium falciparum malaria hyperimmune serum from patients living in hyperendemic areas and rabbit anti-Proteus spp GDH(NADP+) serum prepared in the laboratory. In this report, we describe the results of a study showing that parasite GDH(NADP+) can be used to detect the presence of Plasmodium falciparum. It appears that this technique permits the chromatographic detection of a Plasmodium falciparum excretion antigen that may be used in the production of monoclonal antibodies to improve immunodiagnostic assays for the detection of antigenemia, and opens the possibility of its use as a non-microscopic screening method.
Resumo:
The study of mechanisms which control gene expression in trypanosomatids has developed at an increasing rate since 1989 when the first successful DNA transfection experiments were reported. Using primarily Trypanosoma brucei as a model, several groups have begun to elucidate the basic control mechanisms and to define the cellular factors involved in mRNA transcription, processing and translation in these parasites. This review focuses on the most recent studies regarding a subset of genes that are expressed differentially during the life cycle of three groups of parasites. In addition to T. brucei, I will address studies on gene regulation in a few species of Leishmania and the results obtained by a much more limited group of laboratories studying gene expression in Trypanosoma cruzi. It is becoming evident that the regulatory strategies chosen by different species of trypanosomatids are not similar, and that for these very successful parasites it is probably advantageous to employ multiple mechanisms simultaneously. In addition, with the increasing numbers of parasite genes that have now been submitted to molecular dissection, it is also becoming evident that, among the various strategies for gene expression control, there is a predominance of regulatory pathways acting at the post-transcriptional level.
Resumo:
Lactic acid bacteria (LAB) are Gram-positive bacteria and are generally regarded as safe (GRAS) organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc) was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE) of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV) epitope-protein fusion (BCV-Nuc). BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.
Resumo:
The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.
Resumo:
Studies concerning the antigenicity of thyroglobulin fragments allow the characterization of the epitopes but do not consider the role of heavier antigenic fragments that could result in vivo from the action of endoproteases. Here we assess the relative importance of the fragments obtained from thyroglobulin by limited proteolysis with trypsin and compare by immunoblotting their reactivity to serum from patients with autoimmune (Graves' disease and Hashimoto's thyroiditis) and non-autoimmune (subacute thyroiditis) disease. The results showed no difference in frequency of recognition of any peptide by sera from patients with autoimmune thyroiditis. In contrast, sera from patients with subacute thyroiditis reacted more frequently with a peptide of 80 kDa. These results suggest the presence of antibody subpopulations directed at fragments produced in vivo by enzymatic cleavage of thyroglobulin. This fragment and antibodies to it may represent markers for subacute thyroiditis.
Resumo:
Three Brazilian isolates of bovine viral diarrhea virus (BVDV), antigenically distinct from the standard North American isolates, were selected to immunize BALB/c mice in order to obtain hybridoma cells secreting anti-BVDV monoclonal antibodies (mAbs). Two hybridoma clones secreting mAbs, reacting specifically with BVDV-infected cells (mAbs 3.1C4 and 6.F11), were selected after five fusions and screening of 1001 hypoxanthine-aminopterin-thymidine-resistant clones. These mAbs reacted in an indirect fluorescent antibody (IFA) assay with all 39 South and North American BVDV field isolates and reference strains available in our laboratory, yet failed to recognize other pestiviruses, namely the hog cholera virus. The mAbs reacted at dilutions up to 1:25,600 (ascitic fluid) and 1:100 (hybridoma culture supernatant) in IFA and immunoperoxidase (IPX) staining of BVDV-infected cells but only mAb 3.1C4 neutralized virus infectivity. Furthermore, both mAbs failed to recognize BVDV proteins by IPX in formalin-fixed paraffin-embedded tissues and following SDS-PAGE and immunoblot analysis of virus-infected cells, suggesting they are probably directed to conformational-type epitopes. The protein specificity of these mAbs was then determined by IFA staining of CV-1 cells transiently expressing each of the BVDV proteins: mAb 3.1C4 reacted with the structural protein E2/gp53 and mAb 6.F11 reacted with the structural protein E1/gp25. Both mAbs were shown to be of the IgG2a isotype. To our knowledge, these are the first mAbs produced against South American BVDV isolates and will certainly be useful for research and diagnostic purposes.
Resumo:
The main objective of the present study was to assess the specificity and sensitivity of a modified assay using short synthetic peptides of the V3 region of HIV-1 gp120, which is the main target for neutralizing antibodies. Results from an enzyme immunoassay (EIA) employing a panel of synthetic peptides of HIV-1 subtypes and using urea washes to detect high avidity antibodies (AAV3) were compared with those obtained by the heteroduplex mobility assay and DNA sequencing. The EIA correctly typed 100% of subtype B (sensitivity = 1.0; specificity = 0.95), 100% of HIV-1 E samples (sensitivity = 1.0; specificity = 1.0), and 95% of subtype C specimens (sensitivity = 0.95; specificity = 0.94). In contrast, only 50% of subtype A (sensitivity = 0.5; specificity = 0.95), 60% of subtype D (sensitivity = 0.6; specificity = 1.0), and 28% of subtype F samples (sensitivity = 0.28; specificity = 0.95) were correctly identified. This approach was also able to discriminate in a few samples antibodies from patients infected with B variants circulating in Brazil and Thailand that reacted specifically. The assays described in this study are relatively rapid and simple to perform compared to molecular approaches and can be used to screen large numbers of serum or plasma samples. Moreover, the classification in subtypes (genotypes) may overestimate HIV-1 diversity and a classification into serotypes, based on antigenic V3 diversity or another principal neutralization domain, may be more helpful for vaccine development and identification of variants.
Resumo:
Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml) of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.
Resumo:
Purification and characterization of individual antigenic proteins are essential for the understanding of the pathogenic mechanisms of mycobacteria and the immune response against them. In the present study, we used anion-exchange chromatography to fractionate cell extracts and culture supernatant proteins from Mycobacterium bovis to identify T-cell-stimulating antigens. These fractions were incubated with peripheral blood mononuclear cells (PBMC) from M. bovis-infected cattle in lymphoproliferation assays. This procedure does not denature proteins and permits the testing of mixtures of potential antigens that could be later identified. We characterized protein fractions with high stimulation indices from both culture supernatants and cell extracts. Proteins were identified by two-dimensional gel electrophoresis followed by N-terminal sequencing or MALDI-TOF. Culture supernatant fractions containing low molecular weight proteins such as ESAT6 and CFP10 and other proteins (85B, MPB70), and the novel antigens TPX and TRB-B were associated with a high stimulation index. These results reinforce the concept that some low molecular weight proteins such as ESAT6 and CFP10 play an important role in immune responses. Also, Rv3747 and L7/L12 were identified in high stimulation index cell extract fractions. These data show that protein fractions with high lymphoproliferative activity for bovine PBMC can be characterized and antigens which have been already described and new protein antigens can also be identified in these fractions.