162 resultados para uml-rt
Resumo:
This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR). A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species.
Resumo:
Ascorbate peroxidases (APX) are class I heme-containing enzymes that convert hydrogen peroxide into water molecules. The gene encoding APX has been characterized in 11 strains of Trypanosoma cruzi that are sensitive or resistant to benznidazole (BZ). Bioinformatic analysis revealed the presence of two complete copies of the T. cruzi APX (TcAPX) gene in the genome of the parasite, while karyotype analysis showed that the gene was present in the 2.000-kb chromosome of all of the strains analyzed. The sequence of TcAPX exhibited greater levels of similarity to those of orthologous enzymes from Leishmania spp than to APXs from the higher plant Arabidopsis thaliana. Northern blot and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no significant differences in TcAPX mRNA levels between the T. cruzi strains analyzed. On the other hand, Western blots showed that the expression levels of TcAPX protein were, respectively, two and three-fold higher in T. cruzi populations with in vitro induced (17 LER) and in vivo selected (BZR) resistance to BZ, in comparison with their corresponding susceptible counterparts. Moreover, the two BZ-resistant populations exhibited higher tolerances to exogenous hydrogen peroxide than their susceptible counterparts and showed TcAPX levels that increased in a dose-dependent manner following exposure to 100 and 200 µM hydrogen peroxide.
Resumo:
Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB), a leading cause of death from infectious disease worldwide. Rapid diagnosis of resistant strains is important for the control of TB. Real-time polymerase chain reaction (RT-PCR) assays may detect all of the mutations that occur in the M. tuberculosis 81-bp core region of the rpoB gene, which is responsible for resistance to rifampin (RIF) and codon 315 of the katG gene and the inhA ribosomal binding site, which are responsible for isoniazid (INH). The goal of this study was to assess the performance of RT-PCR compared to traditional culture-based methods for determining the drug susceptibility of M. tuberculosis. BACTEC TM MGIT TM 960 was used as the gold standard method for phenotypic drug susceptibility testing. Susceptibilities to INH and RIF were also determined by genotyping of katG, inhA and rpoB genes. RT-PCR based on molecular beacons probes was used to detect specific point mutations associated with resistance. The sensitivities of RT-PCR in detecting INH resistance using katG and inhA targets individually were 55% and 25%, respectively and 73% when combined. The sensitivity of the RT-PCR assay in detecting RIF resistance was 99%. The median time to complete the RT-PCR assay was three-four hours. The specificities for tests were both 100%. Our results confirm that RT-PCR can detect INH and RIF resistance in less than four hours with high sensitivity.
Resumo:
In Niterói, state of Rio de Janeiro, dengue virus type 4 (DENV-4) was isolated for the first time in March 2011. We analysed the laboratory findings of the first cases and evaluated the use of molecular techniques for the detection of DENV-4 in Aedes aegypti that were field-caught. Conventional reverse transcriptase-polymerase chain reaction (RT-PCR) and SimplexaTM Dengue real-time RT-PCR confirmed DENV-4 infection in all cases. Additionally, DENV-4 was confirmed in a female Ae. aegypti with 1.08 x 10³ copies/mL of virus, as determined by quantitative real-time RT-PCR. This is the first time the SimplexaTM Dengue real-time assay has been used for the classification of cases of infection and for entomological investigations. The use of these molecular techniques was shown to be important for the surveillance of dengue in humans and vectors.
Resumo:
Stool is chemically complex and the extraction of DNA from stool samples is extremely difficult. Haemoglobin breakdown products, such as bilirubin, bile acids and mineral ions, that are present in the stool samples, can inhibit DNA amplification and cause molecular assays to produce false-negative results. Therefore, stool storage conditions are highly important for the diagnosis of intestinal parasites and other microorganisms through molecular approaches. In the current study, stool samples that were positive for Giardia intestinalis were collected from five different patients. Each sample was stored using one out of six different storage conditions [room temperature (RT), +4ºC, -20ºC, 70% alcohol, 10% formaldehyde or 2.5% potassium dichromate] for DNA extraction procedures at one, two, three and four weeks. A modified QIAamp Stool Mini Kit procedure was used to isolate the DNA from stored samples. After DNA isolation, polymerase chain reaction (PCR) amplification was performed using primers that target the β-giardin gene. A G. intestinalis-specific 384 bp band was obtained from all of the cyst-containing stool samples that were stored at RT, +4ºC and -20ºC and in 70% alcohol and 2.5% potassium dichromate; however, this band was not produced by samples that had been stored in 10% formaldehyde. Moreover, for the stool samples containing trophozoites, the same G. intestinalis-specific band was only obtained from the samples that were stored in 2.5% potassium dichromate for up to one month. As a result, it appears evident that the most suitable storage condition for stool samples to permit the isolation of G. intestinalis DNA is in 2.5% potassium dichromate; under these conditions, stool samples may be stored for one month.
Resumo:
ELISA in situ can be used to titrate hepatitis A virus (HAV) particles and real-time polymerase chain reaction (RT-PCR) has been shown to be a fast method to quantify the HAV genome. Precise quantification of viral concentration is necessary to distinguish between infectious and non-infectious particles. The purpose of this study was to compare cell culture and RT-PCR quantification results and determine whether HAV genome quantification can be correlated with infectivity. For this purpose, three stocks of undiluted, five-fold diluted and 10-fold diluted HAV were prepared to inoculate cells in a 96-well plate. Monolayers were then incubated for seven, 10 and 14 days and the correlation between the ELISA in situ and RT-PCR results was evaluated. At 10 days post-incubation, the highest viral load was observed in all stocks of HAV via RT-PCR (10(5) copies/mL) (p = 0.0002), while ELISA revealed the highest quantity of particles after 14 days (optical density = 0.24, p < 0.001). At seven days post-infection, there was a significant statistical correlation between the results of the two methods, indicating equivalents titres of particles and HAV genome during this period of infection. The results reported here indicate that the duration of growth of HAV in cell culture must be taken into account to correlate genome quantification with infectivity.
Resumo:
We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR) assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.
Resumo:
During the influenza pandemic of 2009, the A(H1N1)pdm09, A/H3N2 seasonal and influenza B viruses were observed to be co-circulating with other respiratory viruses. To observe the epidemiological pattern of the influenza virus between May 2009-August 2011, 467 nasopharyngeal aspirates were collected from children less than five years of age in the city of Salvador. In addition, data on weather conditions were obtained. Indirect immunofluorescence, real-time transcription reverse polymerase chain reaction (RT-PCR), and sequencing assays were performed for influenza virus detection. Of all 467 samples, 34 (7%) specimens were positive for influenza A and of these, viral characterisation identified Flu A/H3N2 in 25/34 (74%) and A(H1N1)pdm09 in 9/34 (26%). Influenza B accounted for a small proportion (0.8%) and the other respiratory viruses for 27.2% (127/467). No deaths were registered and no pattern of seasonality or expected climatic conditions could be established. These observations are important for predicting the evolution of epidemics and in implementing future anti-pandemic measures.
Resumo:
Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs) for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay (IIF). Through IIF, 33 (20.4%) specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3%) positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV). Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1) pdm09 virus, human coronavirus (HCoV) NL63 and HCoV HKU1].
Resumo:
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.
Resumo:
This study aimed to verify the diversity of Culicidae species and their frequency of infection with flaviviruses and alphaviruses in Cuiabá, state of Mato Grosso, Brazil. Mosquitoes were captured with Nasci aspirators and hand net in 200 census tracts, identified alive at species level and pooled in one-20 (11,090 mosquitoes, 14 species). Female pools (n = 610) were subjected to multiplex seminested-reverse transcription-polymerase chain reaction (RT-PCR) for 11 flavivirus and five alphavirus. Positive pools were tested by single RT-PCR followed by nucleotide sequencing, by RT-PCR for E1 gene [Mayaro virus (MAYV)] and by inoculation in Vero cells (MAYV) or C6/36 cells (flaviviruses). One/171 Aedes aegypti was positive for dengue virus (DENV)-1, 12/403 Culex quinquefasciatus, and four/171Ae. aegypti for MAYV, which was isolated from two pools containing two nonengorged females of Ae. aegypti and two ofCx. quinquefasciatus. DENV-4 was detected in 58/171 pools of Ae. aegytpi, 105/403 Cx. quinquefasciatus, two/five Psorophora sp., two/11 Psorophora varipes/Psorophora albigenu, one/one Sabethes chloropterus, two/five Culex bidens/Culex interfor, and one/one Aedes sp. DENV-4 was isolated from two pools containing three and 16 nonengorged Cx. quinquefasciatus females. Phylogenetic analysis revealed MAYV belongs to genotype L, clustering with human samples of the virus previously identified in the city. Cuiabá has biodiversity and ecosystem favourable for vector proliferation, representing a risk for arbovirus outbreaks.
Resumo:
The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.