192 resultados para radiation variability
Resumo:
Tropical high altitude grasslands present several species with both microphyllous and highly sclerophyllous leaves, and co-occur in specific soil patches, thus exposed to identical environments. In this article we describe herbivory among co-occurring microphyllous species in a tropical high altitude grassland ecosystem of Serra do Cipó, Minas Gerais state, and we tested the effect of variable anatomic traits on leaf herbivory patterns. Leaf anatomical traits were investigated for Baccharis imbricata Heering , Lavoisiera imbricata DC. and L. subulata Triana (focal species). Herbivory was measured from branches and leaves of individual plants and compared among co-occurring species within one multispecific shrub patch and among L. subulata individuals from this patch and an adjacent monospecific patch. For all present plant species and individuals we estimated the proportion of leaves with different levels of area lost. For the focal species, six leaves were sorted and taken for histological sectioning, in order to allow precise measures of defensive structures. Relative mean leaf area lost differed significantly among the six species found in the multispecific patch. Lavoisiera subulata individuals were more attacked in the multispecific than in the monospecific patch. Leaf margin protection traits in both B. imbricata and L. imbricata showed significant effect against herbivory. Data suggest that some anatomic traits have direct effect against herbivory but their effect are not clearly perceptible among branches within individual plants or among plants within the same species.
Resumo:
Intra and interspecific variability was measured in the genus Lycopersicon for the traits: productivity rate (PR, total number of regenerated shoots/total number of cultures), regeneration percentage (%R, number of cultures regenerating shoots or primordia/total number of cultures) and callus percentage (%C, number of cultures only producing callus/total number of cultures). Leaf explants from various genotypes of L. esculentum, L. esculentum var. cerasiforme, L. pimpinellifolium and L. peruvianum were placed on Murashige and Skoog (Physiol. Plant. 15: 473-493, 1962) medium + 0.175 mg/l IAA + 2.25 mg/l BA. Significant differences among species and among genotypes within the same species were found, while genotypes from different species showed similar responses.
Resumo:
The genetic variability of the "curimba", Prochilodus lineatus, from three locations in the Paraná river basin, was investigated by starch gel electrophoresis. A total of 160 specimens were analyzed for 19 enzymes, 12 of which permitted successful interpretation of electrophoretic patterns. Eighteen loci were identified and six of them proved to be polymorphic (EST-1*, EST-2*, IDH-1*, PGM-1*, PGM-2*, LDH-2*). Mean heterozygosity was considered high (13%) by comparison with the literature. A low level of differentiation was found among subpopulations, with mean F ST = 0.018. Values of genetic distance and genetic identity suggest that, at least along this stretch of the river, P. lineatus comprises a single breed with high gene flow. This analysis has important implications for fishery management, aquaculture, and conservation of the stocks
Resumo:
Combined therapy with radiation and chemotherapy has being increasingly used in cancer treatment. The effect of combinations of taxol (0.08 mug/ml) with doxorubicin (DXR, 0.5 or 1.0 mug/ml) or gamma radiation (20 or 40 cGy) was examined in two different treatment schedules (pretreatment or simultaneous treatment) using Chinese hamster ovary (CHO) cells treated at the G2 phase of the cell cycle. The results showed that taxol did not have a radiosensitizing effect on the chromosomal aberrations induced by gamma radiation nor did it have a potentiating effect on the chromosomal aberrations induced by DXR in CHO cells treated in the G2 phase of the cell cycle
Resumo:
Variation in salt tolerance of six natural populations of Stylosanthes humilis from three ecogeographic regions, Mata (wet tropical climate), Agreste and Sertão (semi-arid tropical climate) of Pernambuco State, Northeast Brazil, was evaluated on germination in 201 mM NaCl. There were significant differences among families of all populations for germination percentage and of five populations (except Tamandaré, from Mata) for germination rate. Populations from semi-arid regions presented high coefficients of genetic variation, those from Agreste being higher than those from Sertão. Populations from Mata showed low coefficients of genetic variation. The coefficients of genotypic determination were high for five populations, except Tamandaré, both for germination percentage ( > or = 0.89) and for germination rate ( > or = 0.79), indicating the possibility of selection for salt tolerance in these populations. An electrophoretic analysis of esterase and peroxidase isozymes was also performed in the six populations, and correlations were estimated between salt tolerance and allelic frequencies. The analysis of salt tolerant and salt sensitive families of populations from Agreste suggested an association of alleles of a peroxidase locus with salt tolerance during germination in the Caruaru population
Resumo:
Isozyme patterns and their genetic control in three Centrosema species are described. Seven isozymatic systems (aspartate aminotransferase, glucose-6-phosphate isomerase, phosphoglucomutase, anodal peroxidase, malate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase) were studied in 18 populations and several breeding lines of C. acutifolium, C. brasilianum and C. pubescens, using starch gel electrophoresis techniques. All systems, except glucose-6-phosphate isomerase, are described for the first time in these species. A total of 17 isozyme loci were scored; this represents the largest set of Mendelian loci known up to now in Centrosema species. Isozyme polymorphism and variability within and between populations and species were relatively high and allowed discrimination among species
Resumo:
Induced mutations by gamma radiation (0, 5, 10, 20 and 40 kR doses) and reciprocal crosses were tested as mechanisms of enhancing genetic variability for plant height in two triticale cultivars, BR4 and EMBRAPA18. The reciprocal crosses and all doses of radiation showed similar increase in genetic amplitude for this trait, being suitable for increasing variability in breeding programs. Genotypes showed different responses as the gamma ray doses were increased, expressing shorter plant height. The decision of using induced mutations or artificial crosses depends on the resources available and the selection method to be used
Resumo:
Observation colonies containing only young workers from 10 matrix colonies were set up to investigate the genetic aspects involved in task division in Melipona quadrifasciata. Wide variation among origins was observed for all behaviors analyzed, but these differences were significant only for brood cell construction and propolis preparation
Resumo:
Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability
Resumo:
In the present study, using noise-free simulated signals, we performed a comparative examination of several preprocessing techniques that are used to transform the cardiac event series in a regularly sampled time series, appropriate for spectral analysis of heart rhythm variability (HRV). First, a group of noise-free simulated point event series, which represents a time series of heartbeats, was generated by an integral pulse frequency modulation model. In order to evaluate the performance of the preprocessing methods, the differences between the spectra of the preprocessed simulated signals and the true spectrum (spectrum of the model input modulating signals) were surveyed by visual analysis and by contrasting merit indices. It is desired that estimated spectra match the true spectrum as close as possible, showing a minimum of harmonic components and other artifacts. The merit indices proposed to quantify these mismatches were the leakage rate, defined as a measure of leakage components (located outside some narrow windows centered at frequencies of model input modulating signals) with respect to the whole spectral components, and the numbers of leakage components with amplitudes greater than 1%, 5% and 10% of the total spectral components. Our data, obtained from a noise-free simulation, indicate that the utilization of heart rate values instead of heart period values in the derivation of signals representative of heart rhythm results in more accurate spectra. Furthermore, our data support the efficiency of the widely used preprocessing technique based on the convolution of inverse interval function values with a rectangular window, and suggest the preprocessing technique based on a cubic polynomial interpolation of inverse interval function values and succeeding spectral analysis as another efficient and fast method for the analysis of HRV signals
Resumo:
The collagen structure of isolated and in situ liver granuloma from Swiss Webster mice infected with Schistosoma mansoni was sequentially and three-dimensionally analyzed during different times of infection (early acute, acute, transitional acute-chronic, and chronic phases) by laser scanning confocal microscopy and electron scanning variable vacuum microscopy. The initial granuloma structure is characterized by vascular collagen residues and by anchorage points (or fiber radiation centers), from where collagenous fibers are angularly shed and self-assembled. During the exudative-productive stage, the self-assembly of these fibers minimizes energy and mass through continuous tension and focal compression. The curvature or angles between collagen fibers probably depends on the fibroblastic or myofibroblastic organization of stress fibers. Gradually, the loose unstable lattice of the exudative-productive stage transforms into a highly packed and stable architecture as a result of progressive compactness. The three-dimensional architecture of granulomas provides increased tissue integrity, efficient distribution of soluble compounds and a haptotactic background to the cells.
Resumo:
Heart rate variability is a relevant predictor of cardiovascular risk in humans. A significant genetic influence on heart rate variability is suggested, although the genes involved are ill-defined. The Mas-protooncogene encodes a G-protein-coupled receptor with seven transmembrane domains highly expressed in testis and brain. Since this receptor is supposed to interact with the signaling of angiotensin II, which is an important regulator of cardiovascular homeostasis, heart rate and blood pressure were analyzed in Mas-deficient mice. Using a femoral catheter the blood pressure of mice was measured for a period of 30 min and 250 data values per second were recorded. The mean values and range of heart rate and blood pressure were then calculated. Neither heart rate nor blood pressure were significantly different between knockout mice and controls. However, high resolution recording of these parameters and analysis of the data by non-linear dynamics revealed significant alterations in cardiovascular variability in Mas-deficient animals. In particular, females showed a strong reduction of heart rate variability. Furthermore, the data showed an increased sympathetic tone in knockout animals of both genders. The marked alterations detected in Mas-deficient mice of both genders suggest that the Mas-protooncogene is an important determinant of heart rate and blood pressure variability.
Resumo:
In order to assess the relative influence of age, resting heart rate (HR) and sedentary life style, heart rate variability (HRV) was studied in two different groups. The young group (YG) consisted of 9 sedentary subjects aged 15 to 20 years (YG-S) and of 9 nonsedentary volunteers (YG-NS) also aged 15 to 20. The elderly sedentary group (ESG) consisted of 16 sedentary subjects aged 39 to 82 years. HRV was assessed using a short-term procedure (5 min). R-R variability was calculated in the time-domain by means of the root mean square successive differences. Frequency-domain HRV was evaluated by power spectrum analysis considering high frequency and low frequency bands. In the YG the effort tolerance was ranked in a bicycle stress test. HR was similar for both groups while ESG showed a reduced HRV compared with YG. Within each group, HRV displayed a negative correlation with HR. Although YG-NS had better effort tolerance than YG-S, their HR and HRV were not significantly different. We conclude that HRV is reduced with increasing HR or age, regardless of life style. The results obtained in our short-term study agree with others of longer duration by showing that age and HR are the main determinants of HRV. Our results do not support the idea that changes in HRV are related to regular physical activity.
Resumo:
The aim of the present study was to compare the modulation of heart rate in a group of postmenopausal women to that of a group of young women under resting conditions on the basis of R-R interval variability. Ten healthy postmenopausal women (mean ± SD, 58.3 ± 6.8 years) and 10 healthy young women (mean ± SD, 21.6 ± 0.82 years) were submitted to a control resting electrocardiogram (ECG) in the supine and sitting positions over a period of 6 min. The ECG was obtained from a one-channel heart monitor at the CM5 lead and processed and stored using an analog to digital converter connected to a microcomputer. R-R intervals were calculated on a beat-to-beat basis from the ECG recording in real time using a signal-processing software. Heart rate variability (HRV) was expressed as standard deviation (RMSM) and mean square root (RMSSD). In the supine position, the postmenopausal group showed significantly lower (P<0.05) median values of RMSM (34.9) and RMSSD (22.32) than the young group (RMSM: 62.11 and RMSSD: 49.1). The same occurred in the sitting position (RMSM: 33.0 and RMSSD: 18.9 compared to RMSM: 57.6 and RMSSD: 42.8 for the young group). These results indicate a decrease in parasympathetic modulation in postmenopausal women compared to young women which was possibly due both to the influence of age and hormonal factors. Thus, time domain HRV proved to be a noninvasive and sensitive method for the identification of changes in autonomic modulation of the sinus node in postmenopausal women.
Resumo:
Ionizing radiation can change the molecular structure and affect the biological properties of biomolecules. This has been employed to attenuate animal toxins. Crotamine is a strongly basic polypeptide (pI 10.3) from Crotalus durissus terrificus venom composed of 42 amino acid residues. It induces skeletal muscle spasms leading to a spastic paralysis of hind limbs in mice. The objective of the present study was to carry out a biochemical study and a toxic activity assay on native and irradiated crotamine. Crotamine was purified from C.d. terrificus venom by Sephadex G-100 gel filtration followed by ion-exchange chromatography, and irradiated at 2 mg/ml in 0.15 M NaCl with 2.0 kGy gamma radiation emitted by a 60Co source. The native and irradiated toxins were evaluated in terms of structure and toxic activity (LD50). Irradiation did not change the protein concentration, the electrophoretic profile or the primary structure of the protein although differences were shown by spectroscopic techniques. Gamma radiation reduced crotamine toxicity by 48.3%, but did not eliminate it.