251 resultados para multiresistant isolates
Resumo:
The performance of the nitrate reductase assay (NRA) was compared with the proportion method (PM) on Lowenstein-Jensen medium and the BACTEC MGIT960 assay under routine conditions using 160 clinical isolates of Mycobacterium tuberculosis with a high proportion of resistant strains. The mean time to obtain results was 8.8 days and the overall agreements between NRA and PM and NRA and M960 were 95% and 94%, respectively. NRA was easy to perform and represents a useful tool for the rapid screening of drug-resistant M. tuberculosis strains in low-resource countries.
Resumo:
The hepatitis C virus (HCV) NS3 protease has been one of the molecular targets of new therapeutic approaches. Its genomic sequence variability in Brazilian HCV isolates is poorly documented. To obtain more information on the magnitude of its genetic diversity, 114 Brazilian HCV samples were sequenced and analysed together with global reference sequences. Genetic distance (d) analyses revealed that subtype 1b had a higher degree of heterogeneity (d = 0.098) than subtypes 1a (d = 0.060) and 3a (d = 0.062). Brazilian isolates of subtype 1b were distributed in the phylogenetic tree among sequences from other countries, whereas most subtype 1a and 3a sequences clustered into a single branch. Additional characterisation of subtype 1a in clades 1 and 2 revealed that all but two Brazilian subtype 1a sequences formed a distinct and strongly supported (approximate likelihood-ratio test = 93) group of sequences inside clade 1. Moreover, this subcluster inside clade 1 presented an unusual phenotypic characteristic in relation to the presence of resistance mutations for macrocyclic inhibitors. In particular, the mutation Q80K was found in the majority of clade 1 sequences, but not in the Brazilian isolates. These data demonstrate that Brazilian HCV subtypes display a distinct pattern of genetic diversity and reinforce the importance of sequence information in future therapeutic approaches.
Resumo:
In Brazil, carbapenem-resistant Pseudomonas aeruginosa isolates are closely related to the São Paulo metallo-β-lactamase (SPM) Brazilian clone. In this study, imipenem-resistant isolates were divided in two sets, 2002/2003 and 2008/2009, analysed by pulsed field gel electrophoresis and tested for the Ambler class B metallo-β-lactamase (MBL) genes blaSPM-1, blaIMP and blaVIM. The results show a prevalence of one clone related to the SPM Brazilian clone in 2002/2003. In 2008/2009, P. aeruginosa isolates were mostly MBL negative, genetically diverse and unrelated to those that had been detected earlier. These findings suggest that the resistance to carbapenems by these recent P. aeruginosa isolates was not due to the spread of MBL-positive SPM-related clones, as often observed in Brazilian hospitals.
Resumo:
The extensive use of azole antifungal agents has promoted the resistance of Candida spp to these drugs. Candida glabrata is a problematic yeast because it presents a high degree of primary or secondary resistance to fluconazole. In Brazil, C. glabrata has been less studied than other species. In this paper, we compared the activity of three major classes of antifungal agents (azoles, echinocandins and polyenes) against fluconazole-susceptible (FS) and fluconazole-resistant (FR) C. glabrata strains. Cross-resistance between fluconazole and voriconazole was remarkable. Among the antifungal agents, the echinocandins were the most effective against FS and FR C. glabrata and micafungin showed the lowest minimal inhibitory concentrations.
Resumo:
The microplate nitrate reductase assay (MNRA) and the rezasurin microtitre assay (REMA) were used for the susceptibility testing of 73 clinical isolates and the results were compared with those that were obtained using the Bactec 460 TB and Bactec MGIT 960 systems. The REMA and the MNRA were performed in 96-well plates. For the REMA, the concentrations of isoniazid (INH) and rifampicin (RIF) ranged from 1.0-0.01 µg/mL and 2.0-0.03 µg/mL, respectively. For the MNRA, the INH concentration was between 1.0-0.03 µg/mL and the RIF concentration was between 2.0-0.06 µg/mL. For the MNRA, the sensitivity, specificity, positive predictive value, negative predictive value and INH/RIF agreement were 100/95.6, 97.6/100, 96.8/100, 100/98 and 98.6/98.6, respectively, and for the REMA, they were 100/91.3, 90.4/100, 88.5/100, 100/96.1 and 94.5/97.2, respectively. Our data suggest that these two rapid, low-cost methods may be inexpensive, alternative assays for the rapid detection of multidrug resistant tuberculosis in low-income countries.
Resumo:
Leptospirosis is an emerging infectious disease that has been identified as both a human and animal health problem worldwide. Regular outbreaks associated with specific risk factors have been reported in Argentina. However, there are no available data concerning the genetic population level for this pathogen. Therefore, the aim of this work was to describe the genetic diversity of Leptospira interrogans through the application of two molecular typing strategies: variable number of tandem repeats (VNTR) and multilocus sequence typing (MLST). For this purpose, seven reference strains and 18 non-epidemiologically related isolates from diverse hosts and Argentinean regions were analysed. Among them, nine genotypes and seven sequence types (STs), including three unreported STs, were described using VNTR and MLST, respectively. eBURST analysis demonstrated that ST37 was the most frequent and founder genotype of a clonal complex (CCs) containing STN1 and STN3, suggesting the importance of studying the serovars belonging to this CC in Argentina. The data from maximum parsimony analysis, which combined both techniques, achieved intra-serovar discrimination, surmounted microscopic agglutination test discrepancies and increased the discriminatory power of each technique applied separately. This study is the first to combine both strategies for L. interrogans typing to generate a more comprehensive molecular genotyping of isolates from Argentina in a global context.
Resumo:
In this study, we investigated the presence of plasmid-mediated quinolone resistance (PMQR) genes among 101 ciprofloxacin-resistant urinary Escherichia coli isolates and searched for mutations in the quinolone-resistance-determining regions (QRDRs) of the DNA gyrase and topoisomerase IV genes in PMQR-carrying isolates. Eight isolates harboured the qnr and aac(6')-Ib-cr genes (3 qnrS1, 1 qnrB19 and 4 aac(6')-Ib-cr). A mutational analysis of the QRDRs in qnr and aac(6')-Ib-cr-positive isolates revealed mutations in gyrA, parC and parE that might be associated with high levels of resistance to quinolones. No mutation was detected in gyrB. Rare gyrA, parC and parE mutations were detected outside of the QRDRs. This is the first report of qnrB19, qnrS1 and aac(6')-Ib-cr -carrying E. coli isolates in Brazil.
Resumo:
The aim of this study was to characterize two metallo-β-lactamases (MBLs)-producing Pseudomonas aeruginosa clinical isolates showing meropenem susceptibility. Antimicrobial susceptibility was assessed by automated testing and Clinical and Laboratory Standards Institute agar dilution method. MBL production was investigated by phenotypic tests. Molecular typing was determined by pulsed field gel electrophoresis (PFGE). MBL-encoding genes, as well as their genetic context, were identified by polymerase chain reaction (PCR) and sequencing. The location of blaIMP-16 was determined by plasmid electrophoresis, Southern blot and hybridization. Transcriptional levels of blaIMP-16, mexB, mexD, mexF, mexY, ampC and oprD were determined by semi-quantitative real time PCR. The P. aeruginosa isolates studied, Pa30 and Pa43, showed imipenem and meropenem susceptibility by automated testing. Agar dilution assays confirmed meropenem susceptibility whereas both isolates showed low level of imipenem resistance. Pa30 and Pa43 were phenotypically detected as MBL producers. PFGE revealed their clonal relatedness. blaIMP-16 was identified in both isolates, carried as a single cassette in a class 1 integron that was embedded in a plasmid of about 60-Kb. Pa30 and Pa43 overexpressed MexAB-OprM, MexCD-OprJ and MexXY-OprM efflux systems and showed basal transcriptional levels of ampC and oprD. MBL-producing P. aeruginosa that are not resistant to meropenem may represent a risk for therapeutic failure and act as silent reservoirs of MBL-encoding genes.
Resumo:
Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions.
Resumo:
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.
Resumo:
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Resumo:
Tuberculosis (TB) is an infectocontagious respiratory disease caused by members of the Mycobacterium tuberculosis complex. A 7 base pair (bp) deletion in the locus polyketide synthase (pks)15/1 is described as polymorphic among members of the M. tuberculosis complex, enabling the identification of Euro-American, Indo-Oceanic and Asian lineages. The aim of this study was to characterise this locus in TB isolates from Mexico. One hundred twenty clinical isolates were recovered from the states of Veracruz and Estado de Mexico. We determined the nucleotide sequence of a ± 400 bp fragment of the locus pks15/1, while genotypic characterisation was performed by spoligotyping. One hundred and fifty isolates contained the 7 bp deletion, while five had the wild type locus. Lineages X (22%), LAM (18%) and T (17%) were the most frequent; only three (2%) of the isolates were identified as Beijing and two (1%) EAI-Manila. The wild type pks15/1 locus was observed in all Asian lineage isolates tested. Our results confirm the utility of locus pks15/1 as a molecular marker for identifying Asian lineages of the M. tuberculosis complex. This marker could be of great value in the epidemiological surveillance of TB, especially in countries like Mexico, where the prevalence of such lineages is unknown.
Resumo:
Giardia duodenalis is one of the most prevalent enteroparasites in children. This parasite produces several clinical manifestations. The aim of this study was to determine the prevalence of genotypes of G. duodenalis causing infection in a region of southeastern Mexico. G. duodenalis cysts were isolated (33/429) from stool samples of children and molecular genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, targeting the triosephosphate isomerase ( tpi ) and glutamate dehydrogenase ( gdh ) genes. The tpi gene was amplified in all of the cyst samples, either for assemblage A (27 samples) or assemblage B (6 samples). RFLP analysis classified the 27 tpi -A amplicons in assemblage A, subgenotype I. Samples classified as assemblage B were further analysed using PCR-RFLP of the gdh gene and identified as assemblage B, subgenotype III. To our knowledge, this is the first report of assemblage B of G. duodenalis in human clinical samples from Mexico.
Resumo:
We have analysed the whole mitochondrial (mt) genome sequences (each ~6 kilo nucleotide base pairs in length) of four field isolates of the malaria parasite Plasmodium falciparum collected from different locations in India. Comparative genomic analyses of mt genome sequences revealed three novel India-specific single nucleotide polymorphisms. In general, high mt genome diversity was found in Indian P. falciparum, at a level comparable to African isolates. A population phylogenetic tree placed the presently sequenced Indian P. falciparum with the global isolates, while a previously sequenced Indian isolate was an outlier. Although this preliminary study is limited to a few numbers of isolates, the data have provided fundamental evidence of the mt genome diversity and evolutionary relationships of Indian P. falciparum with that of global isolates.
Resumo:
The characteristics of tuberculosis (TB) patients related to a chain of recent TB transmissions were investigated. Mycobacterium tuberculosis (MTB) isolates (120) were genotyped using the restriction fragment length polymorphism-IS6110 (R), spacer oligotyping (S) and mycobacterial interspersed repetitive units-variable number of tandem repeats (M) methods. The MTB isolates were clustered and the clusters were grouped according to the similarities of their genotypes. Spearman’s rank correlation coefficients between the groups of MTB isolates with similar genotypes and those patient characteristics indicating a risk for a pulmonary TB (PTB) chain transmission were ana- lysed. The isolates showing similar genotypes were distributed as follows: SMR (5%), SM (12.5%), SR (1.67%), MR (0%), S (46.67%), M (5%) and R (0%). The remaining 35 cases were orphans. SMR exhibited a significant correlation (p < 0.05) with visits to clinics, municipalities and comorbidities (primarily diabetes mellitus). S correlated with drug consumption and M with comorbidities. SMR is needed to identify a social network in metropolitan areas for PTB transmission and S and M are able to detect risk factors as secondary components of a transmission chain of TB.