215 resultados para methicillin susceptibility
Resumo:
Environmental changes from water resource developmental projects affect the epidemiology of water-associated diseases, as well as malaria and schistosomiasis. Aiming to investigate the occurrence and distribution of freshwater snails of medical and veterinary importance in the area of influence of the Peixe Angical hydroelectric dam, a survey has been conducted over four years (2004-2008). The study has revealed the occurrence of populations of Biomphalaria straminea (Dunker) in all municipalities surrounding the lake. Studies on parasite-mollusc compatibility were undertaken using 35 populations of B. straminea, descendants of specimens obtained from that area and three strains of Schistosoma mansoni (Sambon) (BH, CM and CMO). The main results are as follows: (i) among the 1,314 specimens used, eight had been infected (infection index of 0.6%) with only the BH strain, (ii) for B. straminea populations, the mortality index was 6.8% and, depending on the strain used, the indexes were 4.6%, 8.49% and 19% with BH, CM and CMO strains, respectively, (iii) the infection indexes varied according to the B. straminea populations, ranging from 0-12.5% and (iv) the duration of the precercarial period varied from 25-49 days. These results, in addition to environmental and social changes that took place in the Peixe Angical dam region, indicate the possibility of B. straminea emerging as a schistosomiasis vector in this area.
Resumo:
Schistosomiasis has expanded to southern parts of Brazil. Between 2005-2007 the dispersion and the proliferation of Biomphalaria tenagophila was verified in the province of Corrientes near the Brazilian border. In order to study the possibility that schistosomiasis might spread into the basins of the Paraná and Uruguay Rivers, 440 B. tenagophila collected from 10 populations groups were experimentally exposed to infection with Schistosoma mansoni of the SJ2 strain. Snails from five localities were susceptible. Frandsen's index (TCP/100) shows that those snails from Mirungá (11%), Aguacerito (2%) and Curupicay (2%) were Class I and not very compatible. Meanwhile, snails from Copra (6%) and Pay-Ubre (22%), in the Paraná River basin, were Class II and poorly compatible.
Resumo:
We conducted a cross-sectional, hospital-based study between January 2006-March 2008 to estimate the resistance of Mycobacterium tuberculosis to first-line drugs in patients with tuberculosis at a Brazilian hospital. We evaluated the performance of the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) microplate assay compared with the Bactec-MGIT 960 system for mycobacteria testing. The prevalence of resistance in M. tuberculosis was 6.7%. Multidrug-resistance [resistance to rifampicin (RMP) and isoniazid (INH)], INH-resistance and streptomycin (SM)-resistance accounted for 1%, 3.8% and 3.8% of all resistance, respectively, and all isolates were susceptible to ethambutol (EM). The resistance was primary in four cases and acquired in three cases and previous treatment was associated with resistance (p = 0.0129). Among the 119 M. tuberculosis isolates, complete concordance of the results for INH and EM was observed between the MTT microplate and Bactec-MGIT 960TM methods. The observed agreement for RMP was 99% (sensitivity: 90%) and 95.8% for SM (sensitivity 90.9%), lower than those for other drugs. The MTT colourimetric method is an accurate, simple and low-cost alternative in settings with limited resources.
Resumo:
Therapeutic failure of benznidazole (BZ) is widely documented in Chagas disease and has been primarily associated with variations in the drug susceptibility of Trypanosoma cruzi strains. In humans, therapeutic success has been assessed by the negativation of anti-T. cruzi antibodies, a process that may take up to 10 years. A protocol for early screening of the drug resistance of infective strains would be valuable for orienting physicians towards alternative therapies, with a combination of existing drugs or new anti-T. cruzi agents. We developed a procedure that couples the isolation of parasites by haemoculture with quantification of BZ susceptibility in the resultant epimastigote forms. BZ activity was standardized with reference strains, which showed IC50 to BZ between 7.6-32 µM. The assay was then applied to isolates from seven chronic patients prior to administration of BZ therapy. The IC50 of the strains varied from 15.6 ± 3-51.4 ± 1 µM. Comparison of BZ susceptibility of the pre-treatment isolates of patients considered cured by several criteria and of non-cured patients indicates that the assay does not predict therapeutic outcome. A two-fold increase in BZ resistance in the post-treatment isolates of two patients was verified. Based on the profile of nine microsatellite loci, sub-population selection in non-cured patients was ruled out.
Resumo:
The pathogenicity of Cryptococcus neoformans is heterogeneous and is associated with the expression of virulence factors. This study aimed to correlate the pathogenicity of C. neoformans var. grubii in BALB/c mice with in vitro virulence factors, fluconazole minimal inhibitory concentrations (MICs) and molecular profiles, before and after animal passage. Ten environmental isolates and one ATCC strain of C. neoformans var. grubii mating type α were evaluated. Most isolates (91%) killed 50% or more of the infected animals by day 24 postinfection and were recovered from the lungs and brains of surviving animals on days 7 and 14 postinfection. The burden of yeast in the lungs was more variable than that in the brain. The differences in the expression of virulence factors (growth at 37ºC, presence and size of the capsule and production of melanin, urease, proteinase and phospholipase) by most isolates pre and postpassage in animals were not statistically significant. The fluconazole MICs in postpassaged lines differed by a one-dilution from the MIC of the corresponding prepassaged line for six isolates. Using molecular typing [polymerase chain reaction-fingerprinting with (GACA)4 and M13], eight isolates were identified as VNI and three as VNII. We concluded that different isolates with the same molecular and phenotypic profiles, including isolates that are markedly hypervirulent, span a wide range of virulence and there were no changes in virulence factors in the postpassaged lines when compared with the corresponding nonpassaged lines.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococcus spp (CNS) are the most common pathogens that cause serious long term infections in patients. Despite the existence of new antimicrobial agents, such as linezolid, vancomycin (VAN) remains the standard therapy for the treatment of infections caused by these multidrug-resistant strains. However, the use of VAN has been associated with a high frequency of therapeutic failures in some clinical scenarios, mainly with decreasing concentration of VAN. This work aims to evaluate the synergic potential of VAN plus sulfamethoxazole/trimethoprim (SXT), VAN plus rifampin (RIF) and VAN plus imipenem (IPM) in sub-minimum inhibitory concentrations against 22 clinical strains of MRSA and CNS. The checkerboard method showed synergism of VAN/RIF and VAN/SXT against two and three of the 22 strains, respectively. The combination of VAN with IPM showed synergistic effects against 21 out of 22 strains by the E-test method. Four strains were analyzed by the time-kill curve method and synergistic activity was observed with VAN/SXT, VAN/RIF and especially VAN/IPM in sub-inhibitory concentrations. It would be interesting to determine if synergy occurs in vivo. Evidence of in vivo synergy could lead to a reduction of the standard VAN dosage or treatment time.
Resumo:
Nine colonies of five sibling species members of Anopheles barbirostris complexes were experimentally infected with Plasmodium falciparum and Plasmodium vivax. They were then dissected eight and 14 days after feeding for oocyst and sporozoite rates, respectively, and compared with Anopheles cracens. The results revealed that Anopheles campestris-like Forms E (Chiang Mai) and F (Udon Thani) as well as An. barbirostris species A3 and A4 were non-potential vectors for P. falciparum because 0% oocyst rates were obtained, in comparison to the 86.67-100% oocyst rates recovered from An. cracens. Likewise, An. campestris-like Forms E (Sa Kaeo) and F (Ayuttaya), as well as An. barbirostris species A4, were non-potential vectors for P. vivax because 0% sporozoite rates were obtained, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. barbirostris species A1, A2 and A3 were low potential vectors for P. vivax because 9.09%, 6.67% and 11.76% sporozoite rates were obtained, respectively, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. campestris-like Forms B and E (Chiang Mai) were high-potential vectors for P. vivax because 66.67% and 64.29% sporozoite rates were obtained, respectively, in comparison to 90% sporozoite rates recovered from An. cracens.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) protease mutation D30N is exclusively selected by the protease inhibitor (PI) nelfinavir and confers resistance to this drug. We demonstrate that D30N increases the susceptibility to saquinavir (SQV) and amprenavir in HIV-1 subtype B isolates and that the N88D mutation in a D30N background neutralizes this effect. D30N also suppresses indinavir (IDV) resistance caused by the M46I mutation. Interestingly, in patients with viruses originally containing the D30N mutation who were treated with IDV or SQV, the virus either reversed this mutation or acquired N88D, suggesting an antagonistic effect of D30N upon exposure to these PIs. These findings can improve direct salvage drug treatment in resource limited countries where subtype B is epidemiologically important and extend the value of first and second line PIs in these populations.
Resumo:
We have previously established that young male rats are more susceptible to the effects of Trypanosoma cruzi infection than adult rats. To explore underlying age-associated differences in disease outcome, we simultaneously assessed hormone levels and cytokine release throughout the acute infection period in young and adult rats infected with T. cruzi. Young rats were inoculated with 1 x 10(6) and adult rats with 7 x 10(6) blood trypomastigotes, according to their relative body weight. At zero, seven, 14, 21 and 28 days after infection, blood was collected for the determination of gonadal and adrenal hormones, tumor necrosis factor α (TNF-α), interleukin (IL)-10 and specific IgM and IgG subtypes. Young animals displayed significantly higher parasitaemia values and an endocrine pattern that was characterised by elevated values in corticosterone (CT) and the CT/dehydroepiandrosterone-sulfate ratio, which favours immunosuppression and susceptibility. In contrast, adult male rats were able to restrict the parasite burden, which likely resulted from increased IgG antibody synthesis and oestradiol levels. Adult rats also showed a reduced TNF-α/IL-10 ratio and less tissue damage. We conclude that young animals exhibited increased vulnerability to T. cruzi infection compared with adults and this is associated with an unsuitable immunoendocrine milieu.
Resumo:
The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB.
Resumo:
Molecular techniques can aid in the classification of Biomphalaria species because morphological differentiation between these species is difficult. Previous studies using phylogeny, morphological and molecular taxonomy showed that some populations studied were Biomphalaria cousini instead of Biomphalaria amazonica. Three different molecular profiles were observed that enabled the separation of B. amazonica from B. cousini. The third profile showed an association between the two and suggested the possibility of hybrids between them. Therefore, the aim of this work was to investigate the hybridism between B. cousini and B. amazonica and to verify if the hybrids are susceptible to Schistosoma mansoni. Crosses using the albinism factor as a genetic marker were performed, with pigmented B. cousini and albino B. amazonica snails identified by polymerase chain reaction-restriction fragment length polymorphism. This procedure was conducted using B. cousini and B. amazonica of the type locality accordingly to Paraense, 1966. In addition, susceptibility studies were performed using snails obtained from the crosses (hybrids) and three S. mansoni strains (LE, SJ, AL). The crosses between B. amazonica and B. cousini confirmed the occurrence of hybrids. Moreover, hybrids can be considered potential hosts of S. mansoni because they are susceptible to LE, SJ and AL strains (4.4%, 5.6% and 2.2%, respectively). These results indicate that there is a risk of introducing schistosomiasis mansoni into new areas.
Resumo:
Virulence and antibiotic resistance are significant determinants of the types of infections caused by Staphylococcus aureus and paediatric groups remain among the most commonly affected populations. The goal of this study was to characterise virulence genes of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains isolated from a paediatric population of a Colombian University Hospital during 2009. Sixty MSSA and MRSA isolates were obtained from paediatric patients between zero-14 years. We identified the genes encoding virulence factors, which included Panton-Valentine leucocidine (PVL), staphylococcal enterotoxins A-E, exfoliative toxins A and B and toxic shock syndrome toxin 1. Typing of the staphylococcal chromosome cassette mec (SCCmec) was performed in MRSA strains. The virulence genes were more diverse and frequent in MSSA than in MRSA isolates (83% vs. 73%). MRSA strains harboured SCCmec types IVc (60%), I (30%), IVa (7%) and V (3%). SCCmec type IVc isolates frequently carried the PVL encoding genes and harboured virulence determinants resembling susceptible strains while SCCmec type I isolates were often negative. PVL was not exclusive to skin and soft tissue infections. As previously suggested, these differences in the distribution of virulence factor genes may be due to the fitness cost associated with methicillin resistance.
Resumo:
The aim of the present study was to evaluate the effect of cotrimoxazole on the in vitro susceptibility of Coccidioides posadasii strains to antifungals. A total of 18 strains of C. posadasii isolated in Brazil were evaluated in this study. The assays were performed in accordance with the Clinical and Laboratory Standards Institute guidelines and the combinations were tested using the checkerboard method. The minimum inhibitory concentrations were reduced by 11, 2.4, 4.3 and 3.5 times for amphotericin B, itraconazole, fluconazole and voriconazole, respectively. Moreover, it was seen that cotrimoxazole itself inhibited C. posadasii strains in vitro. The impairment of folic acid synthesis may be a potential antifungal target for C. posadasii.
Resumo:
Malaria remains a major infectious disease that affects millions of people. Once infected with Plasmodium parasites, a host can develop a broad range of clinical presentations, which result from complex interactions between factors derived from the host, the parasite and the environment. Intense research has focused on the identification of reliable predictors for exposure, susceptibility to infection and the development of severe complications during malaria. Although most promising markers are based on the current understanding of malaria immunopathogenesis, some are also focused more broadly on mechanisms of tissue damage and inflammation. Taken together, these markers can help optimise therapeutic strategies and reduce disease burden. Here, we review the recent advances in the identification of malarial biomarkers, focusing on those related to parasite exposure and disease susceptibility. We also discuss priorities for research in biomarkers for severe malaria.
Resumo:
Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.