176 resultados para Urban waters
Resumo:
The objective of this work was to evaluate the total and thermotolerant coliform densities in the oyster culture water of Cananeia, SP, Brazil, correlating these densities with environmental variables and tidal variations. Superficial water samples were collected in two tide conditions (spring and neap) from three areas of Cananéia municipality (Mandira, Itapitangui and Cooperostra). The three studied areas showed good conditions for the culture regarding coliform densities. The two tidal conditions differed significantly as to total coliform concentration; however, the same procedure was not performed for thermotolerant coliforms. No correlation was observed between water temperature, pH, and concentrations of total and thermotolerant coliforms. Coliform density was positively correlated with rainfall and negatively correlated with salinity. Spring and neap tides differed significantly as to coliform number. Simple diagnosis of environmental conditions of the crop fields is insufficient to assess water quality of shellfish cultivation. A continuous monitoring program of planted areas is necessary both for the assessment of water quality potential for marine culture and for ensuring safe consumption of seafood, besides constituting an important tool to understand the relationships between contamination and the involved environmental variables.
Resumo:
The objective of this work was to evaluate the growth of the mangrove oyster Crassostrea gasar cultured in marine and estuarine environments. Oysters were cultured for 11 months in a longline system in two study sites - São Francisco do Sul and Florianópolis -, in the state of Santa Catarina, Southern Brazil. Water chlorophyll-α concentration, temperature, and salinity were measured weekly. The oysters were measured monthly (shell size and weight gain) to assess growth. At the end of the culture period, the average wet flesh weight, dry flesh weight, and shell weight were determined, as well as the distribution of oysters per size class. Six nonlinear models (logistic, exponential, Gompertz, Brody, Richards, and Von Bertalanffy) were adjusted to the oyster growth data set. Final mean shell sizes were higher in São Francisco do Sul than in Florianópolis. In addition, oysters cultured in São Francisco do Sul were more uniformly distributed in the four size classes than those cultured in Florianópolis. The highest average values of wet flesh weight and shell weight were observed in São Francisco do Sul, whereas dry flesh weight did not differ between the sites. The estuary environment is more promising for the cultivation of oysters.
Resumo:
A preliminary analyses of the possible contamination of superficial and underground water by the active ingredients of the pesticide products used in the surroundings of the urban area of Primavera do Leste, Mato Grosso, Brazil, was carried out. A description of the study region and of its environmental characteristics, which can favor the contamination of the local aquatic environment, was presented. The EPA screening criteria, the groundwater ubiquity score (GUS) and the criteria proposed by Goss were used to evaluate which pesticides might contaminate the local waters. Among the active ingredients studied, several present risks to the local aquatic environment.
Resumo:
This work reports the use of square wave voltammetry (SWV) to analyse the electrochemical reduction of dichlorvos (2, 2-dichlorovinyl-dimethylphosphate) in spiked pure and natural waters. SWV measurements were carried out in 0.5 mol L-1 Na2SO4 aqueous solutions at pH 5, prepared with water originated from three different sources, namely, one sample of purified water and others from two urban creeks in São Carlos County. In all cases, two reduction peaks were observed, at potentials of -0.15 and -1.05 V vs Ag/AgCl, with both current and potential being dependent on pesticide concentration. This allowed the calculation of the following detection limits: 1.0, 2.5 and 3.0x10-8 mol L-1 for purified, Gregorio creek and Monjolinho creek waters, respectively, in a working range between 2.0x10-7 and 1.4x10-6 mol L-1. Recovery measurements found values higher than 80% in all cases, for an added concentration of 4.0 x 10-7 mol L-1 of dichlorvos in each solution. All analytical experiments were performed in triplicate and showed a standard deviation always less than 3%.
Resumo:
A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS) was developed for As(III) determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC) as complexing agent, and by sorption of the As(III)-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent), followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL) and 4 s elution time (71 µL). The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP), an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976), the retention efficiency was 94±1% (6.0 µg L-1), and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient) was 3.4% (n=5), the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil), and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15). The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.
Resumo:
Copper speciation and behavior in different rivers located in the city of Curitiba were evaluated in this work. Sampling locations were selected to cover different levels of urbanization regarding their anthropogenic occupation and land use. Results showed that in highly-developed areas, both organic matter and dissolved sulfides were able to control copper speciation. Dissolved sulfide species were the major complexing agent in areas where dissolved oxygen levels are low. Finally, it was demonstrated that in urban areas anthropogenic factors such as sewage inputs and occupation of the drainage basin are the key aspects controlling copper dynamics and speciation in river waters.
Resumo:
Aerosol size distributions from 6 to 700 nm were measured simultaneously at an urban background site and a roadside station in Oporto. The particle number concentration was higher at the traffic exposed site, where up to 90% of the size spectrum was dominated by the nucleation mode. Larger aerosol mode diameters were observed in the urban background site possibly due to the coagulation processes or uptake of gases during transport. Factor analysis has shown that road traffic and the neighbour stationary sources localised upwind affect the urban area thought intra-regional pollutant transport.
Resumo:
This work presents alterations in the concentrations of alkaline metals sodium, lithium and potassium, in abiotic compartments, at Araçá stream micro-basin, located in Canoas, RS. Its spring is located in a low populational density region and crosses an elevated environmental impacted urban area. Its final course crosses an agricultural area. Samples of atmospheric particulates, macrophites, water and sediments were analyzed. High concentrations of alkaline metals, related with draining of rice fields or with the ground type, as well as correlations among its concentrations with regional activities were verified. Tripogandra diurética has shown bioaccumulation compatible with their concentrations on waters.
Resumo:
This survey determined the physical and chemical properties of the gravel place where urban sludge from Rio Descoberto's Water Treatment Plant is disposed. Physical, chemical and biological analysis of the soil samples (n=54), sludge samples (n=2), chemical coagulant (n=20) and samples from superficial waters (n=9) and water table (n=60) were performed. As results we can emphasize the horizontal distribution of mineral phases like gibbsite, organic material, exchanged Ca, available Mn and P on the soils are originated from the sludge. Some of these mobile elements could stimulate the growing of the vegetation, but they also could contaminate the water table.
Resumo:
This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP). N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.
Resumo:
Tobacco cultivation in shallow soils and steep landscape under intense use of agrochemicals contributes to environment degradation. In this study, we assessed the concentration of agrochemicals in draw wells used for human consumption and a creek in a small catchment predominantly cropped to tobacco. Chlorpyrifos, flumetralin, and iprodione were determined by gas chromatography with electron capture detection, while imidalcloprid, atrazine, simazine, and clomazone were quantified by high-performance liquid chromatography with UV detection. Considering all sampling sites, all agrochemicals were detected at least once, except for flumetralin. The occurrence of agrochemicals in tobacco crops is a consequence of their fast transfer to surface water.
Resumo:
In this study, the concentration and morphological characteristics of inhalable particulate material (PM10) were evaluated and associated with climatic conditions. The mean annual concentration was 11.0 µg m−3, varying between 0,647 µg m−3 and 36.8 µg m−3. Wind speed has a higher influence on PM10 dispersion, but direction was associated with particle source. During the wet period, wind speed is the main dispersion factor, while speed and direction both are important during the dry period. Based on the morphological characteristics, it is concluded that biogenic particles prevail during the rainy season and terrigenous particles during the dry period, depending on the wind direction and intensity.
Resumo:
Specific combustion programs (Gaseq, Chemical equilibria in perfect gases, Chris Morley) are used to model dioxin and formation in the incineration processes of urban solid wastes. Thanks to these programs, it is possible to establish correlations with the formation mechanisms postulated in literature on the subject. It was found that minimum oxygen quantities are required to obtain a significant formation of these compounds and that more furans than dioxins are formed. Likewise, dioxin and furan formation is related to the presence of carbon monoxide, and dioxin and furan distribution among its different compounds depends on the chlorine and hydrogen relative composition. This is due to the fact that an increased chlorine availability leads to the formation of compounds bearing a higher chlorine concentration (penta-, hexa-, hepta-, and octachlorides), whereas an increased hydrogen availability leads to the formation of compounds bearing a lower chlorine number (mono, di-, tri-, and tetrachlorides).
Resumo:
National Health Surveillance Agency (ANVISA) established in the decree number 54 maximum allowed levels for Ni and Pb in mineral and natural waters at 20 µg L-1 and 10 µg L-1, respectively. For screening analysis purposes, the high-resolution continuum source flame atomic absorption spectrometry technique (HR-CS FAAS) was evaluated for the fast-sequential determination of nickel and lead in mineral waters.Two atomic lines for Ni (232.003 nm - main and 341.477 nm - secondary) and Pb (217.0005 nm - main and 283.306 nm - secondary) at different wavelength integrated absorbance (number of pixels) were evaluated. Sensitivity enhanced with the increase of the number of pixels and with the summation of the atomic lines absorbances. The main figures of merit associated to the HR-CS FAAS technique were compared with that obtained by line-source flame atomic absorption spectrometry (LS FAAS). Water samples were pre-concentrated about 5-fold by evaporation before analysis. Recoveries of Pb significantly varied with increased wavelength integrated absorbance. Better recoveries (92-93%) were observed for higher number of pixels at the main line or summating the atomic lines (90-92%). This influence was irrelevant for Ni, and recoveries in the 92-104% range were obtained in all situations.
Resumo:
Flow injection (FI) methodology, using diffuse reflectance in the visible region of the spectrum, for the analysis of total sulfur in the form of sulfate, precipitated in the form of barium sulfate, is presented. The method was applied to biodiesel, to plant leaves and to natural waters analysis. The analytical signal (S) correlates linearly with sulfate concentration (C) between 20 and 120 ppm, through the equation S=-1.138+0.0934 C (r = 0.9993). The experimentally observed limit of detection is about 10 ppm. The mean R.S.D. is about 3.0 %. Real samples containing sulfate were analyzed and the results obtained by the FI and by the reference batch turbidimetric method using the statistical Student's t-test and F-test were compared.