276 resultados para UNANESTHETIZED RATS
Resumo:
Immunohistochemistry was used to evaluate the effects of neonatal handling and aversive stimulation during the first 10 days of life on the number of corticotrophs in the anterior lobe of the pituitary of 11-day-old male Wistar rats. Since adult rats handled during infancy respond with reduced corticosterone secretion in response to stressors and with less behavior inhibition in novel environments, we assumed that neonatal stimulation could affect pituitary morphology during this critical period of cell differentiation. Three groups of animals were studied: intact (no manipulation, N = 5), handled (N = 5) and stimulated (submitted to 3 different aversive stimuli, N = 5). The percentage of ACTH-immunoreactive cells in the anterior lobe of the pituitary (number of ACTH-stained cells divided by total number of cells) was determined by examining three slices per pituitary in which a minimum of 200 cells were counted by two independent researchers. Although animals during the neonatal period are less reactive to stress-like stimulation in terms of ACTH and corticosterone secretion, results showed that the relative number of ACTH-stained cells of neonatal handled (0.25 ± 0.01) and aversive stimulated (0.29 ± 0.03) rats was not significantly different from intact (0.30 ± 0.03) animals. Neonatal stimulation may have a differential effect on the various subpopulations of corticotroph cells in the anterior pituitary
Resumo:
Cell proliferation and migration in the intestinal crypts, and cell migration in the villus are controlled by different mechanisms in adult rats. In the present study, weanling rats and fasting rats were used to quantitatively study the correlation of cell cycle parameters and epithelial cell migration in crypts and intestinal villi. Eighteen-day-old rats received a single injection of tritiated thymidine [3H]TdR (23:00 h); half of the pups were submitted to fasting 5 h earlier. Cell proliferation was determined in radioautographs of jejunal crypts, on the basis of the labeling indices (LI) taken 1, 8, 13 and 19 h after [3H]TdR. The results showed that the labeling index did not differ 1 h or 19 h after [3H]TdR between the fed (38.7% or 48%) and fasting groups (34.6% or 50.4%). The modified method of grain count halving indicated that cell cycle time did not differ between fed (16.5 h) and fasting rats (17.8 h); the growth fraction, however, had lower values in fasting (59%) than in fed rats (77%). Cell migration in the crypt, estimated by the LI obtained for each cell position, did not change with treatment. As for the villi, the cell migration rate was significantly retarded by 3 cell positions (8%). These results suggest that the cell migration in the villi of weanling pups does not depend directly on the cell proliferation and migration in the intestinal crypt, but is directly affected by the absence of food in the lumen
Resumo:
We evaluated the effects of fundectomy and pyloroplasty on the delay of gastric emptying (GE) and gastrointestinal (GI) transit of liquid due to blood volume (BV) expansion in awake rats. Male Wistar rats (N = 76, 180-250 g) were first submitted to fundectomy (N = 26), Heinecke-Mikulicz pyloroplasty (N = 25) or SHAM laparotomy (N = 25). After 6 days, the left external jugular vein was cannulated and the animals were fasted for 24 h with water ad libitum. The test meal was administered intragastrically (1.5 ml of a phenol red solution, 0.5 mg/ml in 5% glucose) to normovolemic control animals and to animals submitted to BV expansion (Ringer-bicarbonate, iv infusion, 1 ml/min, volume up to 5% body weight). BV expansion decreased GE and GI transit rates in SHAM laparotomized animals by 52 and 35.9% (P<0.05). Fundectomy increased GE and GI transit rates by 61.1 and 67.7% (P<0.05) and prevented the effect of expansion on GE but not on GI transit (13.9% reduction, P<0.05). Pyloroplasty also increased GE and GI transit rates by 33.9 and 44.8% (P<0.05) but did not prevent the effect of expansion on GE or GI transit (50.7 and 21.1% reduction, P<0.05). Subdiaphragmatic vagotomy blocked the effect of expansion on GE and GI transit in both SHAM laparotomized animals and animals submitted to pyloroplasty. In conclusion 1) the proximal stomach is involved in the GE delay due to BV expansion but is not essential for the establishment of a delay in GI transit, which suggests the activation of intestinal resistances, 2) pyloric modulation was not apparent, and 3) vagal pathways are involved
Resumo:
The objective of the present study was to evaluate the response of rats suffering from moderate renal insufficiency to bacterial lipopolysaccharide (LPS, or endotoxin). The study involved 48 eight-week-old male SPF Wistar rats (175-220 g) divided into two groups of 24 animals each. One group underwent 5/6 nephrectomy while the other was sham-operated. Two weeks after surgery, the animals were further divided into two subgroups of 12 animals each and were fasted for 20 h but with access to water ad libitum. One nephrectomized and one sham-treated subgroup received E. coli LPS (25 µg/kg, iv) while the other received a sterile, pyrogen-free saline solution. Gastric retention (GR) was determined 10 min after the orogastric infusion of a standard saline test meal labeled with phenol red (6 mg/dl). The gastric emptying of the saline test meal was studied after 2 h. Renal function was evaluated by measuring the plasma levels of urea and creatinine. The levels of urea and creatinine in 5/6 nephrectomized animals were two-fold higher than those observed in the sham-operated rats. Although renal insufficiency did not change gastric emptying (median %GR = 26.6 for the nephrectomized subgroup and 29.3 for the sham subgroup), LPS significantly retarded the gastric emptying of the sham and nephretomized groups (median %GR = 42.0 and 61.0, respectively), and was significantly greater (P<0.01) in the nephrectomized rats. We conclude that gastric emptying in animals suffering from moderate renal insufficiency is more sensitive to the action of LPS than in sham animals
Resumo:
Food deprivation has been found to stimulate cell proliferation in the gastric mucosa of suckling rats, whereas the weanling period has been reported to be unresponsive in terms of proliferative activity. In the present study we analyze regional differences in the effect of milk or food deprivation on cell proliferation of the epithelia of the esophagus and of five segments of small intestine in suckling, weanling and newly weaned Wistar rats of both sexes. DNA synthesis was determined using tritiated thymidine to obtain labeling indices (LI); crypt depth and villus height were also determined. Milk deprivation decreased LI by 50% in the esophagus (from 15 to 8.35%) and small intestine (from 40 to 20%) of 14-day-old rats. In 18-day-old rats, milk and food deprivation decreased LI in the esophagus (from 13 to 5%) and in the distal segments of the small intestine (from 36-40 to 24-32%). In contrast, the LI of the epithelia of the esophagus (5%) and of all small intestine segments (around 30%) of 22-day-old rats were not modified by food deprivation. Crypt depth did not change after treatment (80 to 120 µm in 14- and 22-day-old rats, respectively). Villus height decreased in some small intestine segments of unfed 14- (from 400 to 300 µm) and 18-day-old rats (from 480 to 360 µm). The results show that, contrary to the stomach response, milk deprivation inhibited cell proliferation in the esophagus and small intestine of suckling rats, demonstrating the regional variability of each segment of the gastrointestinal tract in suckling rats. In newly weaned rats, food deprivation did not alter the proliferation of these epithelia, similarly to the stomach, indicating that weanling is a period marked by the insensitivity of gastrointestinal epithelia to dietary alterations
Resumo:
The changes in mean arterial pressure (MAP) and heart rate (HR) in response to the activation of metabotropic receptors in the nucleus tractus solitarii (NTS) with trans-(±)-1-amino-1,3-cyclopentanedicarboxylic acid (trans-(±)-ACPD) were evaluated in conscious and anesthetized Wistar, male rats weighing 240-260 g (N = 8). The responses obtained with trans-(±)-ACPD were compared with the responses to L-glutamate (1 nmol/100 nl), since in a previous study we showed that anesthesia converted a pressor response to L-glutamate microinjected into the NTS of conscious rats to a depressor response in the same rats under urethane or chloralose anesthesia. Microinjection of 3 doses of trans-(±)-ACPD (100, 500 and 1000 pmol/100 nl) produced a dose-dependent fall in MAP (range, -20 to -50 mmHg) and HR (range, -30 to -170 bpm) under both conscious and chloralose anesthesia conditions. These data indicate that the cardiovascular responses to the activation of metabotropic receptors by trans-(±)-ACPD are not affected by chloralose anesthesia while the cardiovascular responses to the activation of excitatory amino acid (EAA) receptors by L-glutamate are significantly altered
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity
Resumo:
Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.
Resumo:
Ultrastructural phenotypic transitional features were noted between adult adipocytes and fibroblasts in the subcutaneous adipose tissue of the dorsal pad of normal adult Wistar rats of both sexes, weighing 180-260 g, after acute injury either by the implantation of small (1.8 x 1 x 0.4 cm) perforated plastic boxes or by local heat application. Soon after the inflicted damage, fat-containing cells presented variable shapes. Early after damage, some of these cells were round, adipocyte-like, with numerous and large cytoplasmic fat droplets. A few days later, fat-containing cells became elongated, with the fat droplets in their cytoplasm becoming smaller and less numerous. The cells also showed a prominent active rough endoplasmic reticulum and newly formed collagenous matrix accumulated in the interstices. Although current views consider adult adipocytes to be terminal cells, the present findings, in their time sequence, strongly suggest the transformation of adipocytes into fibroblasts after acute injury to adipose tissue.
Resumo:
The antinociceptive effects of stimulating the medial (ME) and central (CE) nuclei of the amygdala in rats were evaluated by the changes in the latency for the tail withdrawal reflex to noxious heating of the skin. A 30-s period of sine-wave stimulation of the ME or CE produced a significant and short increase in the duration of tail flick latency. A 15-s period of stimulation was ineffective. Repeated stimulation of these nuclei at 48-h intervals produced progressively smaller effects. The antinociception evoked from the ME was significantly reduced by the previous systemic administration of naloxone, methysergide, atropine, phenoxybenzamine, and propranolol, but not by mecamylamine, all given at the dose of 1.0 mg/kg. Previous systemic administration of naloxone, atropine, and propranolol, but not methysergide, phenoxybenzamine, or mecamylamine, was effective against the effects of stimulating the CE. We conclude that the antinociceptive effects of stimulating the ME involve at least opioid, serotonergic, adrenergic, and muscarinic cholinergic descending mechanisms. The effects of stimulating the CE involve at least opioid, ß-adrenergic, and muscarinic cholinergic descending mechanisms.
The hyperinsulinemia produced by concanavalin A in rats is opioid-dependent and hormonally regulated
Resumo:
The present study examines the effect of concanavalin A (Con A) on the blood insulin and glucose levels of rats. Male and female rats treated with Con A (62.5-500 µg/kg) for three days showed a dose- and time-dependent hyperinsulinemia that lasted more than 48 h. Male rats were more sensitive to Con A. Thus, 6 h after treatment with Con A the circulating insulin levels in male rats had increased by 85% (control: 10.2 ± 0.9 mU/l and Con A-treated: 18.8 ± 1 mU/l) compared to only 38% (control: 7.5 ± 0.2 mU/l; Con A-treated: 10.3 ± 0.9 mU/l) in females. An identical response was seen after 12 h. Con A (250 µg/kg) produced time-dependent hypoglycemia in both sexes but more pronounced in males. There was no correlation between the hypoglycemia and hyperinsulinemia described above. The Con A-induced hyperinsulinemia in rats of both sexes was abolished in gonadectomized animals (intact males: +101 ± 17% vs orchiectomized males: -5 ± 3%; intact females: +86 ± 23% vs ovariectomized females: -18 ± 7.2%). Pretreating intact male and female rats with human chorionic gonadotropin also significantly inhibited the Con A-induced hyperinsulinemia. Estradiol (10 µg/kg, im) significantly blocked the Con A-induced increase in circulating insulin in male rats (101 ± 17% for controls vs 32 ± 5.3% for estradiol-treated animals, P<0.05) while testosterone (10 mg/kg, im) had no similar effect on intact female rats. Pretreating Con A-injected rats with opioid antagonists such as naloxone (1 mg/kg, sc) and naltrexone (5 mg/kg, sc) blocked the hyperinsulinemia produced by the lectin in males (control: +101 ± 17% vs naloxone-treated: +5 ± 14%, or naltrexone-treated: -23 ± 4.5%) and females (control: +86 ± 23% vs naloxone-treated: +21 ± 20%, or naltrexone-treated: -18 ± 11%). These results demonstrate that Con A increases the levels of circulating insulin in rats and that this response is opioid-dependent and hormonally regulated.
Resumo:
This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL). Males (4 weeks old) from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group). CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks) caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A), were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05). Total liver protein decreased below the level seen in either pair-fed animals (group P) or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05), whereas gastrocnemius muscle protein was higher than the values normally described for control (C) animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05). Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05). This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05). Brown adipose tissue (BAT) cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05), was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05). The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.
Resumo:
Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes (MLN)) and skeletal muscles (gastrocnemius and soleus) of adrenodemedullated (ADM) rats. The results were compared with those obtained for sham-operated rats. TBARs content was reduced by adrenodemedullation in the lymphoid organs (MLN (28%), thymus (40%) and spleen (42%)) and gastrocnemius muscle (67%). G6PDh activity was enhanced in the MLN (69%) and reduced in the spleen (28%) and soleus muscle (75%). CS activity was reduced in all tissues (MLN (75%), spleen (71%), gastrocnemius (61%) and soleus (43%)), except in the thymus which displayed an increment of 56%. Cu/Zn-SOD activity was increased in the MLN (126%), thymus (223%), spleen (80%) and gastrocnemius muscle (360%) and was reduced in the soleus muscle (31%). Mn-SOD activity was decreased in the MLN (67%) and spleen (26%) and increased in the thymus (142%), whereas catalase activity was reduced in the MLN (76%), thymus (54%) and soleus muscle (47%). It is particularly noteworthy that in ADM rats the activity of glutathione peroxidase was not detectable by the method used. These data are consistent with the possibility that epinephrine might play a role in the oxidative stress of the lymphoid organs. Whether this fact represents an important mechanism for the establishment of impaired immune function during stress remains to be elucidated.
Resumo:
The present study evaluates the effect of blood volume expansion on the gastrointestinal transit of a charchoal meal (2.5 ml of an aqueous suspension consisting of 5% charcoal and 5% gum arabic) in awake male Wistar rats (200-270 g). On the day before the experiments, the rats were anesthetized with ether, submitted to left jugular vein cannulation and fasted with water ad libitum until 2 h before the gastrointestinal transit measurement. Blood volume expansion by iv infusion of 1 ml/min Ringer bicarbonate in volumes of 3, 4 or 5% body weight delayed gastrointestinal transit at 10 min after test meal administration by 21.3-26.7% (P<0.05), but no effect was observed after 1 or 2% body weight expansion. The effect of blood volume expansion (up to 5% body weight) on gastrointestinal transit lasted for at least 60 min (P<0.05). Mean arterial pressure increased transiently and central venous pressure increased and hematocrit decreased (P<0.05). Subdiaphragmatic vagotomy and yohimbine (3 mg/kg) prevented the delay caused by expansion on gastrointestinal transit, while atropine (0.5 mg/kg), L-NAME (2 mg/kg), hexamethonium (10 mg/kg), prazosin (1 mg/kg) or propranolol (2 mg/kg) were ineffective. These data show that blood volume expansion delays the gastrointestinal transit of a charcoal meal and that vagal and yohimbine-sensitive pathways appear to be involved in this phenomenon. The delay in gastrointestinal transit observed here, taken together with the modifications of gastrointestinal permeability to salt and water reported by others, may be part of the mechanisms involved in liquid excess management.
Resumo:
The effect of the consumption of ethanol (5%) on retinol concentration in milk was studied in the rat on day 12 after delivery, together with the evolution of dam body weight and pup growth rate. Female Wistar rats receiving alcohol (5%) in drinking water during lactation (N = 7) were compared to normal controls fed ad libitum (N = 6). The mean maternal alcohol intake was 3.96 ± 0.23 g/kg body weight per day. To determine retinol levels in milk we used the Bessey and Lowry method, modified by Araújo and Flores ((1978) Clinical Chemistry, 24: 386-392). The pups were separated from dams for a 2-4-h period, after which the dams were injected intraperitoneally with anesthetic and oxytocin. The concentration of retinol in milk was 162.88 ± 10.60 µg/dl in the control group and 60.02 ± 8.22 µg/dl in the ethanol group (P<0.05). The ethanol group consumed less food than the controls and lost a significant amount of weight during lactation. On days 8, 10 and 12, the body weight of the pups from rats given ethanol (13.46 ± 0.43, 16.12 ± 0.48 and 18.60 ± 0.91 g, respectively) were significantly lower (P<0.05) than the weight of pups from controls (15.2 ± 0.44, 18.36 ± 0.54, 20.77 ± 0.81 g). These data show that ethanol intake during the suckling period, even at low concentrations, decreases the amount of retinol in milk and, therefore, the amount available to the pups.